CoinFabrik

WSTS Audit

Aril 2024

By CoinFabrik

v202311



Executive Summary 3
Scope 3
Methodology 4
Findings 4
Severity Classification 6
Issues Status 6
Critical Severity Issues 6
CR-01 Missing Inbound Messages Authentication 6

CR-02 Authorization Logic Missing in Critical Functions 7

High Severity Issues 8
HI-01 Missing Deletions Exposing Signers Unnecessarily 8

HI-02 Improper Initialization Leading to Insecure Uses 8

HI-03 Insufficient Timeout Handling Could Lead to Denial of Service 9
Medium Severity Issues 10
ME-01 Untrusted Address Book Could Lead to Unavailability 10

ME-02 Duplicated Method Calls Could Lead to Denial of Service 10

Minor Severity Issues 11
MI-01 Sensitive Data Could Be Exposed Via Public Parameters 11

MI-02 Protocol Deviations Could Lead To Attacks 11

MI-03 Use of Message Expansion When Computing Challenge and Binding Values12

MI-04 Undocumented Cryptographic Key Derivation 12

MI-05 Unavailability Through Faulty Error Handling 12

MI-06 Inconsistent Configuration 13

MI-07 Some States Do Not Timeout in FIRE 13

MI-08 Bad Randomness in Nonce Generation 14
Enhancements 14
EN-01 About Documentation 15
EN-02 Unavailable Mechanism for Changes 15

EN-03 Unwanted Comments 16

EN-04 Unnecessary Computations 16

EN-05 All Signers Unnecessary In Nonce Generation 17

EN-06 Variable Naming 17

EN-07 Duplicated Operation 17

EN-08 Bad Randomness Source 18

EN-09 Testing 18
Changelog 18

Page 2 of 18



Executive Summary

CoinFabrik was asked to audit the WSTS project. WSTS stands for Weighted Schnorr
Threshold Signatures, a library for threshold signatures supporting weights with an
application to Stacks block signing.

During this audit we found 2 critical-severity issues, 3 high-severity issues and several
medium and minor-severity issues. Also, several enhancements were proposed.

Scope

The audited files are from the git repository located at
https://github.com/Trust-Machines/wsts. The auditis based on commit
€98c6dd9432f871851a4b2fb25e568ee28510428 (tag v8.0.0).

The scope for this audit includes and is limited to the following files:

src/common.rs: various common constructions (polynomial commitments, nonces,
shares, and Chaum-Pedersen proofs for Diffie-Hellman tuples)

src/compute.rs: various protocol related computations (binding factors, challenge,
lagrangian interpolation coefficients, polynomial evaluation, intermediate values for
parties and aggregators, tagged hashing and signature tweaking)

src/errors.rs: error enumeration definitions

src/1lib.rs: module declarations

src/main.rs: example usage of base level library functions

src/net.rs: state machine messages and communication interface
src/schnorr.rs: Schnorr ID, challenge and verification
src/state_machine/coordinator/fire.rs: FIRE metaprotocol coordinator state
machine

src/state_machine/coordinator/frost.rs: single FROST round coordinator
state machine

src/state_machine/coordinator/mod.rs: general state machine functionalities
for coordinators

src/state_machine/mod.rs: general state machine functionalities

src/state _machine/signer/mod.rs: signer state machine

src/taproot.rs: BIP-340 compliant Schnorr signature and proof
src/traits.rs: Signer and Aggregator traits

src/util.rs: Diffie-Hellman key exchange, encryption and decryption utilities
src/vl.rs: FROST protocol implementation

src/v2.rs: WSTS protocol implementation

src/vss.rs: construction of a random polynomial with coefficients in Zq

Page 3 of 18



5

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation.

Methodology

CoinFabrik was provided with the source code, including automated tests, and a technical
paper describing the protocol. Our auditors spent seven weeks auditing the source code
provided, which includes understanding the cryptographic protocols and context of use,
analyzing the boundaries of the expected behavior of the library, understanding the
implementation by the development team (including dependencies beyond the scope to be
audited) and identifying possible situations in which the code allows the caller to reach a
state that exposes some vulnerability. Without being limited to them, the audit process
included the following analyses.

Protocol errors

Cryptographic errors

Arithmetic errors.

Race conditions.

Denial of service attacks.

Missing or misused function qualifiers.
Needlessly complex code and interactions.
Poor or nonexistent error handling.

Insufficient validation of the input parameters.
Incorrect handling of cryptographic signatures.

Findings

In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status
CR-01 Missing Inbound Messages Authentication Critical
CR-02 Authorization Logic Missing in Critical Critical
Functions
HI-01 Neglected Deletions Exposing Signers High
Unnecessarily

Page 4 of 18



®

ID Title Severity Status
HI-02 Improper Initialization Leading to Insecure High
Uses
HI-03 Insufficient Timeout Handling Could Lead High
to Denial of Service
ME-01 Untrusted Address Book Could Lead to Medium
Unavailability
ME-02 Duplicated Method Calls Could Lead to Medium
Denial of Service
MI-01 Sensitive Data Could Be Exposed Minor
MI-02 Protocol Deviations Could Lead To Attacks Minor
MI-03 Use of Message Expansion When Minor
Computing Challenge and Binding Values
MI-04 Undocumented Cryptographic Key Minor
Derivation
MI-05 Unavailability Through Faulty Error Minor
Handling
MI-06 Inconsistent Configuration Minor
MI-07 Some States Do Not Timeout in FIRE Minor
MI-08 Bad Randomness in Nonce Generation Minor

Severity Classification

Security risks are classified as follows:

Page 5 of 18



e Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

e High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

e Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

e Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status

An issue detected by this audit has one of the following statuses:
e Unresolved: The issue has not been resolved.

e Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

e Resolved: Adjusted program implementation to eliminate the risk.

e Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

e Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues

CR-01 Missing Inbound Messages Authentication

Classification:
e CWE-306: Missing Authentication for Critical Function

The methods process_inbound_messages () used by signer and coordinator do not
authenticate the data received. So while signers and the coordinator sign the messages
they send, the signature is not checked (neither by signers nor coordinator) within the
library and the responsibility is left for the implementers. Note that the packet method
validate() does not provide all the necessary guarantees for authentication as it will only

Page 6 of 18


https://cwe.mitre.org/data/definitions/306.html

4‘\)\)

ensure that the packet is coming from another signer or coordinator depending on the
message type (see in conjunction with CR-02 below).

Recommendation

Each method receiving inbound messages should include logic to decide whether the
message is valid according to the message's signer. Alternatively, if the responsibility is left
for the implementers then this should be documented so that implementers make informed
choices over their code.

Status
Unresolved.

CR-02 Authorization Logic Missing in Critical Functions

Classification:
o CWE-285: Improper Authorization.

The coordinator and signer methods process_inbound_mesages() will receive messages
from signers or coordinator, and pass down the messages to other methods depending on
its current state and the message's type. However, this information does not suffice for
proper authorization.

For example, in frost.rs atthe gather_public_shares() method the coordinator
inserts shares into self.dkg_public_shares for a signer_id without actually validating
these shares came (i.e., were signed) by a signer underlying this signer_id. Hence the
coordinator will add these shares for the signer_id and remove the signer_id from the
ids_to_wait vector even if this signer never sent his shares®.

Something analogous happens in other methods including but not limited to the following.

- signer/mod.rs method dkg public_share() in L653 that receives a
dkg public_shares object and inserts them in the hashmap for
dkg_public_shares.signer_id when the sender of this packet could be anyone..

- Infrost.rs the method coordinator.gather_private_shares() L279 similarly
accepts private shares without authenticating the sender.

- Infrost.rs anyone can send a DkgBegin when the coordinator is Idle and set the
round at any number.

Recommendation
Each method processing inbound messages must decide whether an authenticated
message is to be authorized with logic that includes the message signer's identity.

! As a side note, proof of knowledge checks are not done by the coordinator, so that it could be the
case that the public shares are invalid, ignored by signers, but have been inserted in the vector.

Page 7 of 18


https://cwe.mitre.org/data/definitions/285.html

Status
Unresolved.

High Severity Issues

HI-01 Missing Deletions Exposing Signers Unnecessarily

Classification:
o CWE-213: Exposure of Sensitive Information Due to Incompatible Policies

The FROST protocol mandates that certain values are deleted after use to prevent replay
attacks. This includes the proof of knowledge R_i and mu_i (included in the ID class in this
implementation), the secret shares £(j) for all j, and the private and public nonces e, d,
E, D. None of the values are deleted and therefore signers are unnecessarily exposed to
protocol attacks.

Recommendation
Make sure to document what each method is doing and when a protocol security precaution
is not taken. In this case, we suggest implementing deletions.

When talking with the development team, developers suggested that some use cases for
this library may require not to delete these parameters. In that case, our suggestion is to
provide an implementation which does all deletions as mandated, and also to allow library
implementers to specifically configure any alternatives. For those cases, documentation
describing the risk of these actions is a must have.

Status
Unresolved.

HI-02 Improper Initialization Leading to Insecure Uses

Classification:
o (CWE-453: Insecure Default Variable Initialization

The implementation is liable to replay attacks because encryption/validation keys are
permanent and round values repeat. For example, whenever a coordinator is created (e.g.,
c=Coordinator.new(config)) it will be instantiated with c.dkg_id=0 and this value
cannot be changed by configuration. This means that every time a new coordinator is
instantiated, the dkg_id values repeat and hence, encrypted packets used in previous
rounds can be reused (e.g., a round with dkg_id=0 will happen many times, same with
dkg_id=1, etc). This allows malicious users to reuse broadcasted/public values of earlier
rounds at least causing unavailability and allows them to manipulate the protocol logic.

Page 8 of 18


https://cwe.mitre.org/data/definitions/213.html
https://cwe.mitre.org/data/definitions/453.html

Recommendation

Make sure dkg_id, round number and session number values do not repeat, and that all
packets include these values so malicious users cannot implement replay attacks simply by
reusing older packets.

Status
Unresolved.

HI-03 Insufficient Timeout Handling Could Lead to Denial of
Service

Classification:
o CWE-691: Insufficient Control Flow Management.

The FIRE (meta)protocol makes provisions to remove malicious actors and to restart rounds
(or sessions) in certain instances, including for example, when time passess without
protocol state changes. However, checks are insufficient and bad actors could stall the
protocol ignoring these precautions.

For example, the process_inbound_messages() function in the FIRE coordinator seems to
be susceptible to a DOS. The function includes a first block of code where input messages
are processed, and a second block of code that processes results from the previous
codeblock results and takes care of timeouts. If for some reason the stalling were to occur in
the first block, the logic in this method could never exit and the stalling condition would
persist.

One way to exploit this consists in a signer sending a huge amount of shares/nonces for the
correct dkg_id. All of these messages will be processed and this may take more time than
what the timeout allows, yet the time check will happen much later in the code causing
fast-forwarding or failure of a DKG or signing round.

Recommendation

Make sure that each possible execution path is protected against timeouts. Also, include
security tests that exercise these border cases and allow us to be sure that these attacks do
not work. Ideally, staying inside the timeout windows required by protocol should be
prioritized over message processing, so as to avoid the possibility of a coordinator’s state
being manipulated by signers.

Status
Unresolved.

Page 9 of 18


https://cwe.mitre.org/data/definitions/691.html

Medium Severity Issues

ME-01 Untrusted Address Book Could Lead to Unavailability

Classification:
o CWE-345: Insufficient Verification of Data Authenticity

The library receives as part of its configuration sensitive information including maps linking
key_id values and key_ids to public keys that are not validated. This is a very sensitive
point, as an attacker controlling this address book could gain complete control over the
signing process. Moreover, the config object is missing the coordinator’ s public key, so it
appears there is no way to specify this at signer creation (e.g., you will need to manually set
the variable).

Recommendation
Include mechanisms allowing signers and the coordinator to validate the public keys
address book and other sensitive information obtained from external sources.

Status
Unresolved.

ME-02 Duplicated Method Calls Could Lead to Denial of
Service

Classification:
e CWE-400: Uncontrolled Resource Consumption.

Coordinator methods accepting signers shares and nonces, as well as signer methods
accepting shares and nonces do not check if said values have already been received
correctly. A malicious signer, for instance, could repeatedly send the same public shares
before the coordinator is able to process the public shares from other signers and in this
way put a high burden on the coordinator who could not possibly process all messages in
time and therefore stall without moving to the next stage. Moreover, older values are
overwritten and this could lead to signers losing track of what the valid values are.

Recommendation
When receiving a protocol value, make sure this value has not already been received.

Status
Unresolved.

Page 10 of 18


https://cwe.mitre.org/data/definitions/345.html
https://cwe.mitre.org/data/definitions/400.html

Minor Severity Issues

MI-01 Sensitive Data Could Be Exposed Via Public Parameters

Classification:
o CWE-922: Insecure Storage of Sensitive Information

Signer and Coordinator classes use a structure where all the parameters are public and its
access is not limited. In combination with another bug, this could lead to the exposure of
sensitive information.

Recommendation

Limit the access to sensitive parameters so that they can only be accessed via the methods
that require its use. The use of secret-handling crates for sensitive information that needs
to be permanently stored, like private keys, is further recommended.

Status
Unresolved.

MI-02 Protocol Deviations Could Lead To Attacks

Classification:
o CWE-327: Use of a Broken or Risky Cryptographic Algorithm

In the FROST paper there are a few instances in which strings are concatenated and then
hashed to be used as commitments. Sometimes, this implementation changes the order in
which strings are concatenated. While this may probably have no security impact, we
suggest following the paper for soundness and to prevent library collaborators from
misusing these.

The order of R and aG is reversed with respect to the FROST paper in the calculation of
c=Hash(ID...) and it is missing the common reference string. Again, while replay attacks may
be prevented with the use of dkg_id, the impact of this seemingly small protocol deviation
grows in view of Issue HI-02.

Again the order of Hash(R Y m) in this library is different from the FROST paper.

While this is most probably not an issue, it presents the implementers and others with
questions that could be avoided.

Recommendation

As a general rule, either follow the paper's specification or provide a description to the
users explaining the security impact of the change when deviation from protocol.

Page 11 of 18


https://cwe.mitre.org/data/definitions/922.html
https://cwe.mitre.org/data/definitions/327.html

Status
Unresolved.

MI-03 Use of Message Expansion When Computing Challenge
and Binding Values

Classification:
o CWE-327: Use of a Broken or Risky Cryptographic Algorithm.

The computation of the binding and challenge in the standard (RFC9380) are done using a
specific message expansion to circumvent cryptographic vulnerabilities. Check
https://www.rfc-editor.org/rfc/rfc9380.html#name-expand_message_xmd

Recommendation
Use the message expansion scheme from the standard.

Status
Unresolved.

MI-04 Undocumented Cryptographic Key Derivation

Classification:
e CWE-327: Use of a Broken or Risky Cryptographic Algorithm.

During the private shares step, all signers will compute a private share representing the
evaluation of their polynomial £(X) at a scalar i and then encrypt it for another signer. This
is done by first computing a shared secret using elliptic curve Diffie-Hellman and then
using a custom key derivation scheme to derive a key to be used by the symmetric
encryption scheme. However, this protocol is not documented and appears to be a custom
creation. Since this key-exchange, key derivation and encryption protocol has not been
analyzed, and other protocols using very similar elements have been analyzed and provide
security guarantees, there is an unnecessary risk being taken that could be eliminated.

Recommendation
Pick a validated protocol and implement as little as possible, reusing libraries and other
from well validated alternatives.

Status
Unresolved.

MI-05 Unavailability Through Faulty Error Handling

When a signer runs the method dkg_private shares() upon receiving private share, the
execution will run the line

Page 12 of 18


https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/data/definitions/327.html

self.dkg private shares
.insert(src_signer_id, dkg_private_shares.clone());

before attempting decryption so that if decryption fails, the hashmap will still contain the
value.

Recommendation
Handle method errors so that changes to the maps for public shares, private shares, nonces
and the ids_to_wait vectors are reverted in the presence of errors.

Status
Unresolved.

MI-06 Inconsistent Configuration

The Config class in coordinator/mod.rs method new() includes the following line
signer public keys: HashMap<u32, Point>,
However, later the in net.rs the object public keys is different:
pub struct PublicKeys {
/// signer id -> public key
pub signers: HashMap<u32, ecdsa::PublicKey>,
/// key id -> public key
pub key ids: HashMap<u32, ecdsa::PublicKey>,
}

This inconsistency is not caught in tests (for example, of the Packet method validate() which

would catch this error) but this could lead to problems for typical use cases.

Recommendation
Fix the inconsistency.

Status
Unresolved.

MI-07 Some States Do Not Timeout in FIRE

The FIRE implementation includes some states that do not include timeout precautions
(Idle, DkgPublicDistribute, DkgPrivateDistribute, DkgEndDistribute,

Page 13 of 18



NonceRequest, SigShareRequest). Signers could stall when the coordinator is in these
provoking a protocol denial of service.

Recommendation
Consider documenting a careful timeout policy and making sure this is how the FIRE
coordinator is implemented.

Status
Unresolved.

MI-08 Bad Randomness in Nonce Generation

There is an IETF standard for FROST which makes several relevant security suggestions. In
particular to nonces, it hashes the random bytes to include an extra layer of security (here).
However, in this library the nonce (e, d) is computed from two random bytestrings extracted
from the EC wrapper (Scalar: :random(rng) where rng represents OsRng) .

Recommendation
Follow the standard. Check EN-09 as well.

Status
Unresolved.

Enhancements

These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status
EN-01 About Documentation
EN-02 Unavailable Mechanism for Changes
EN-03 Unwanted Comments
EN-04 Unnecessary Computations
EN-05 All Signers Unnecessary in Nonce Generation
EN-06 Variable Naming

Page 14 of 18


https://www.ietf.org/archive/id/draft-irtf-cfrg-frost-14.html#dep-nonces

ID Title Status
EN-07 Duplicated Operation
EN-08 Bad Randomness Source
EN-09 Testing

EN-01 About Documentation

In auditing this project we also went through some alternative FROST implementations. We
found the ZF Frost Book that accompanies the Z-Cash implementation to be helpful and
suggest writing an analogous text. References to the FROST and WSTS papers, or the IETF
standard are also welcome.

Documentation for relevant use cases is missing. In particular, there is no clear indication
into what the interfaces that the library exposes to users since all functions are public. The
most relevant files and functions should include more detailed documentation.

We also find that examples would complement very well with the code and provide a
concise guide to library users (developers).

Recommendation

Most important functions should be documented. Relevant use cases should be covered by
the documentation. Also, the code makes use of very heavy notation that should be very
well documented.

Status
Not implemented.

EN-02 Unavailable Mechanism for Changes

Signers and the coordinator do not include mechanisms for modifying parameters. For
example, if at some point the coordinator where to change, a signer needs a mechanism to
make this change effective. Asking for these changes to be done manually, thought the
modification and reset of multiple parameters may lead to unexpected faults.

The same happens with the other parties in the address book, but also with parameters
such as the threshold or number of keys, which could change during the executions of the
protocol.

Page 15 of 18


https://frost.zfnd.org/
https://github.com/ZcashFoundation/frost

Recommendation
Include mechanisms for modifications that are likely to happen during the library's use, e.g.,
in the node use case.

Status
Not implemented.

EN-03 Unwanted Comments

Todo messages and "developer's comments" can be seen throughout the code. Please
make sure that these are removed only leaving comments that provide documentation.

- /I TODO. state_machine/signer/mod.rs L259, L294

- // TODO: consider move private shares checks here
- // TODO: Once Frost V5 is released, this off by one adjustment
will no longer be required net.rs L451
- // TODO: see if we have sufficient non-malicious signers to
continue fire.rs L657
- frost.rs L515-516 fire.rs L944
fn compute aggregate nonce(&self) -> Point ({
// XXX this needs to be key ids for vl and signer ids for
v2
- In src/compute.rs L74 the first comment
// Is this the best way to return these values?
#[allow (non snake case)]
/// Compute the intermediate values used in both the parties and
the aggregator
pub fn intermediate(msg: &[u8], party ids: &[u32], nonces:

&[PublicNonce]) =-> (Vec<Point>, Point) {

Recommendation
Remove these comments.

Status
Not implemented.

EN-04 Unnecessary Computations

Note that when get_shares() is called with the knowledge of what key_id values are
participating in the round, it is only necessary to evaluate the polynomial (for the private
shares) on those key_id values and no other. Moreover, there is no need to encrypt or

Page 16 of 18



transmit these shares. Nor is there any use in following up with these IDs in the nonce
generation/gathering and signing steps.

Recommendation
Make the computation, encryption and message sending of private shares only for signers
participating in the protocol.

Status
Not implemented.

EN-0S5 All Signers Unnecessary In Nonce Generation

Similar to the above issue, the implementation of frost.rs method request_nonces()
initializes ids_to_wait to all the available signers. Hence, later gather_nonces() requires
(see L388) all parties to send nonces and will not advance until the ids_to_await vector is
empty. This is unnecessary, and could be finished earlier. The set ALPHA (from the FROST
paper) of all round signers should be defined, and only those signers should be expected to
participate.

Recommendation
Allow for signers to drop off a signing round. Consider closing the nonce gathering stage on
a coarser condition.

Status
Not implemented.

EN-06 Variable Naming

Some variable names, method names and states could mislead the developer. Consider
replicating those names used in the FROST and WSTS papers and adding documentation.
For example, calling files and schemes v1 and v2 on one side and FROST and WSTS on the
other, Similarly, the names round and session on one side and current_sign_id,
current_sign_iter_id (for fire.rs, they are named differently in singer/mod.rs)

Recommendation
Follow the notation from the papers when possible.

Status
Not implemented.

EN-07 Duplicated Operation

It appears that in signer/mod.rs dkg_private_shares it is doing the same multiplication twice,
once in L 682 and then inside the run of L 683 make_shared_secret(). Instead use
make_shared_secret_from_key(&shared_key) in L 683 saving the double mult

Page 17 of 18



)

Recommendation
Reuse shared_key so that the multiplication happens only once.

Status
Not implemented.

EN-08 Suboptimal Randomness Source

The library uses the OsRng crate which makes use of the operating system randomness for
all sources of randomness. This choice unnecessarily exposes users; for example, it
happens to be insecure when other applications run in parallel with the library.

Recommendation
We recommend the use of rand: :thread_rng() which is thread safe.

Status
Unresolved.

EN-09 Testing

Testing coverage is limited. In particular, there are no end-to-end tests which would both
serve to test the library and as documentation. We found that it was difficult to construct
tests for border cases, like signers spending too much time to send shares/nonces or
malicious messages and this implies that these situations are difficult to test.

Recommendation
Add tests reflecting common use cases.

Status
Unresolved.

Changelog

o 2024-04-12 — Initial report based on commit
€98c6dd94321871851a4b2fb25e568ee28510428.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the WSTS DKG project since CoinFabrik has not reviewed its
platform. Moreover, it does not provide a smart contract code faultlessness
guarantee.

Page 18 of 18



WSTS Project Audit (extras)
April 2024

Observations

Find here some additional comments which may be of interest to the development

team but may not be of interest to the more general public.

We found the optimization of WSTS over FROST interesting and encourage the author
to publish and share this with the FROST authors.

The message broadcasting and reception for the library relies on the undocumented
application layer. For example, it is assumed that the coordinator will not get ahead of
signers so that, e.g., signers will be asked to send private shares before they receive the
public shares. Other implementations using the library may not guarantee this timing
property and messages could be lost. Synchronization requirements should be
documented.

The method compute: :intermediate(), assumes that nonces are ordered according
to singer_id increasing, but are actually stored in this vector in the same order they are
received, which might not be according to signer_id. When the order changes, the
computation of rho[i] will be incorrect and the code will produce bad signatures. We
suggest storing and using the object as (party_id, (D,E)) following the FROST paper.
Config checks. Improve checks at the configuration level. For example, having threshold
= 0 is allowed and will exit with overflow.

Tests in signer subfolder

o 1. All tests involved use a configuration of a single signer, which conceptually

defeats the purpose of the application.

o 2.dkg_publish_share exposes that the Signer entity is not holding
responsability for checking the instantiated signers id falls within the range of
valid ids for the session. More so reading the implementation we find that no
checks are done when receiving a DkgPublicShares object, thus allowing to

populate its dkg_public_shares map with arbitrary values.

The wrapper for elliptic curve crypto has not been audited. The extra code is heavy.
Please consider having this code audited.

Coding error in let dkg begin = DkgEndBegin {
dkg id: self.current dkg id,

key ids: (0..self.config.num keys).collect (),
signer ids: (0..self.config.num signers).collect (),

Inside start_dkg_end() for frost.rs It should be key_ids=1..num_keys+1.. However, this is
not used later.



WSTS Project Audit (extras)
April 2024

e There are mismatches in how Coordinator and Signer are initialized. For example, fire.rs
L1033:L1041

impl<Aggregator: AggregatorTrait> CoordinatorTrait for
Coordinator<Aggregator> {
/// Create a new coordinator
fn new(config: Config) -> Self {
Self {
aggregator: Aggregator::new(config.num keys,
config.threshold),
config,
current dkg id: O,
current sign id: O,
current sign iter id: O,
And signer.rs L137:L140
Signer {
dkg id: 0,
sign_id: 1,
sign iter id: 1,

consider reviewing them so that they are consistent.



