
sBTC SECURITY REVIEW

Conducted by:
KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA), MARCHEV

JANUARY 5TH, 2025

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

2

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

They have disclosed vulnerabilities that have saved millions in
live TVL and conducted thorough reviews for some of the largest
projects across the Stacks ecosystem.

Learn more about Clarity Alliance at clarityalliance.org.

1. About Clarity Alliance

http://clarityalliance.org

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

3

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree
to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

2. Disclaimer

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

4

3. Introduction
A time-boxed security review of sBTC, where Clarity Alliance
reviewed the scope and provided insights on improving the
protocol.

4. About sBTC
sBTC is a 1:1 Bitcoin-backed asset that enables users to utilize their
BTC within DeFi, decentralized applications, and other blockchain-
based ecosystems. Designed to bring Bitcoin’s security and liquidity
into programmable environments, sBTC expands Bitcoin’s utility
beyond simple transactions.

Bitcoin Finality
All Stacks transactions, including those that involve sBTC, benefit
from 100% Bitcoin finality. This means transactions on Stacks, once
confirmed, are as irreversible as Bitcoin’s.

Programmability
Access a world of new use cases for Bitcoin thanks to Clarity, a
full featured smart contract language optimized for security and
predictability.

Censorship-resistance
sBTC operations happen on the Bitcoin main chain, meaning that
external actors cannot censor these operations.

Source: Stacks sBTC

https://www.stacks.co/sbtc

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

5

5.1 Impact

•	 High - leads to a significant material loss of assets in the
protocol or significantly harms a group of users.

•	 Medium - only a small amount of funds can be lost (such as
leakage of value) or a core functionality of the protocol is
affected.

•	 Low - can lead to any kind of unexpected behavior with some
of the protocol’s functionalities that’s not so critical.

5.2 Likelihood

5.3 Action required for severity levels

•	 High - attack path is possible with reasonable assumptions
that mimic on-chain conditions, and the cost of the attack is
relatively low compared to the amount of funds that can be
stolen or lost.

•	 Medium - only a conditionally incentivized attack vector, but
still relatively likely.

•	 Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

•	 Critical - Must fix as soon as possible (if already deployed)
•	 High - Must fix (before deployment if not already deployed)
•	 Medium - Should fix
•	 Low - Could fix

5. Risk Classification

Severity

Likelihood: High

Likelihood: Medium

Impact: High

Critical

High

Impact: Medium

High

Medium

Impact: Low

Medium

Low

Likelihood: Low Medium Low Low

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

6

6. Security Assessment Summary

•	 Initial analysis started at
53cc756c0ddecff7518534a69bef59fadb5ab1d4

•	 Subsequent analysis was conducted from
5c850909440a2563e8d1450696b853747ef55bf0

This audit focused on a subset of the sBTC system, specifically
components related to Clarity and Emily, rather than the full
codebase. The primary emphasis was on deposit functionality, as
the system was not yet live for withdrawals at the time of review.

https://github.com/stacks-network/sbtc/commit/53cc756c0ddecff7518534a69bef59fadb5ab1d4
https://github.com/stacks-network/sbtc/commit/5c850909440a2563e8d1450696b853747ef55bf0

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

7

7. Executive Summary
Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA), Marchev engaged with - to review sBTC. In this
period of time a total of 27 issues were uncovered.

Protocol Summary

Findings Count

Protocol Name

Severity

Total Findings 27

Amount

Date

sBTC

January 5th, 2025

Low

17

Medium

High

QA

5

4

1

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

8

[H-01]
Random Deposits Can Be Added
Through Inadequately Validated
Deposit Creation API

Partially
Resolved

[M-01]
sBTC Balance Logic Causes
External Integration Issues Acknowledged

[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys Resolved

[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks Acknowledged

[M-04]
Random Withdrawals Can Be Added
Through Inadequately Validated
Withdrawal Creation API

Acknowledged

[L-01] Duplicate Entry in
BUFF_TO_BYTE Resolved

[L-02] Inconsistent Handling of Dust
Limit on Deposits and Withdrawals Acknowledged

[L-03] Authorization Mechanism Is Poorly
Applied in The sBTC Contract Acknowledged

[L-04]
Retry Mechanism Lacks
Exponential Backoff Strategy Acknowledged

[L-05]
Resolve Outstanding Critical TODOs
and Missing Features Acknowledged

Summary of Findings

ID Title Severity Status

Low

Low

Low

Low

Low

Medium

Medium

Medium

Medium

High

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

9

[QA-01] Incomplete sBTC Logging on
Deposit Creation Acknowledged

[QA-02] Typographical Errors Resolved

[QA-03] Remove Unused Constants Resolved

[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates Acknowledged

[QA-05] sBTC Token Name and Symbol Should
Not Be Changeable Acknowledged

[QA-06] Simplification Opportunities in sBTC
Operations Acknowledged

[QA-07] sBTC Contracts Structure and Style
Inconsistencies Acknowledged

[QA-08] Use Constants Where Appropriate Acknowledged

[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts Acknowledged

[QA-10] sBTC Protocol Contract Type Can Be
Updated With Arbitrary Data Acknowledged

[QA-11] Redundant Protocol Mapping in sBTC
Contracts Acknowledged

[QA-12] Some sBTC Protocol Setter Functions
Lack Corresponding Role Acknowledged

[QA-13]
Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments

Resolved

[QA-14] Simplification of EmilyStackUtils
Operations Acknowledged

[QA-15] Cleanup EmilyStack Class Acknowledged

[QA-16] Typographical Errors in Emily Resolved

[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs Acknowledged

Summary of Findings

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

QA

ID Title Severity Status

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

10

Description

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

The Emily API routes, which handle the creation of orders such as deposits
or withdrawals, ultimately write data into the underlying DynamoDB
database. Currently, creating a deposit through the API is not restricted by
any permission system. Without such restrictions, an attacker can
intentionally spam the creation of deposit HTTP requests, leading to
database saturation, increased AWS costs, and potential database issues.

When creating a deposit via the
					 :

•	 There is no requirement for an authorization mechanism or API key.
•	 The	 body is a JSON object mapped to a
				 type entry.

•	 Several validations are missing in the payload body:
	գ There is no validation on the	 	 to ensure it is a valid

Bitcoin transaction. Any arbitrary string can be passed.
	գ There is no validation on the				 to confirm it

corresponds to an index that exists in the		 .

•	 While the			 and			 must be validly 	
					 formatted, there is no
enforced correspondence between the Bitcoin transaction and these	
scripts. As			 and			 are Non-Key
Attributes, there is no constraint preventing the reuse of the script.

•	 Data is only validated to ensure it was correctly saved, which is always
true for newly created deposits.

•	 Finally, the data is directly saved in the database without any further
checks.

POST /deposit →

POST

reclaim_script

reclaim_script deposit_script

deposit_script

CreateDepositRequestBody

handlers::deposit::create_deposit

bitcoin_txid

bitcoin_txid

bitcoin_tx_output_index

sbtc::deposits::DepositScriptInputs

pub struct CreateDepositRequestBody {
/// Bitcoin transaction id.
pub bitcoin_txid: String,
/// Output index on the bitcoin transaction associated with this specific
// deposit.
pub bitcoin_tx_output_index: u32,
/// Reclaim script.
pub reclaim_script: String,
/// Deposit script.
pub deposit_script: String

}

8.1. High Findings

8. Findings

https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/routes/deposit.rs#L54-L64
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/deposit/requests.rs#L37-L46
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L232
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L233
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L280-L300
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L280-L300
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/database/entries/deposit.rs#L128-L153
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/database/entries/deposit.rs#L128-L153
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/deposit/requests.rs#L37-L46
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L232
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L232
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L233

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

11

Recommendation
Implement permissioning to allow only trusted API key holders to add
deposits and introduce further validations on the Bitcoin transaction itself.
Ensure checks are in place to:

•	 Verify that			 is a valid Bitcoin transaction string.
•	 Confirm that			 is an output index that exists

in the specific transaction.
•	 Ensure		 and		 are actually connected

to the		 .

This issue was also identified by the	 team and is a work in progress.

An attacker can easily spam the	 endpoint with arbitrary inputs,
which do not even need to be valid Bitcoin transaction IDs, as long as the
payload includes a valid reclaim and deposit script. The same script can be
reused for each randomly generated	 .

This attack not only increases database costs but can also lead to a denial
of service (DoS) under high load.

bitcoin_txid

bitcoin_txid

sBTC

bitcoin_tx_output_index

reclaim_script deposit_script

/deposit

POST

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

12

Users holding sBTC can withdraw it from Stacks to Bitcoin by
calling the							 function. The
withdrawal process involves several steps:

1.	 The user initiates the withdrawal, specifying the amount they wish to
withdraw and the maximum fee they are willing to pay (in BTC).

2.	 The native Stacks core logic attempts to finalize the transaction on
Bitcoin or refunds it on Stacks if it fails or cannot be executed.

After step (1) is completed, the user is recorded in sBTC’s internal
accounting as having locked tokens.

However, the user’s balance, as perceived by external integrators when
calling the standard SIP-10::get-balance function, does not change:

Due to this mechanism, between the initiation of a withdrawal and its
finalization or execution, users’ principals appear to have a certain balance
externally. However, attempting to transfer this balance will fail, as the
	 function only recognizes unlocked sBTC tokens as available for
transfer.

Consider scenarios where:
•	 A user initiates a withdrawal and then
•	 Interacts with a third-party protocol that accepts generic		

tokens, including	 , for example, for depositing.
•	 The protocol deposit would fail at the		 call due to insufficient

tokens, even if		 internally indicates the user has enough
tokens. This results in poor UI/UX and can be difficult to debug initially.

While there is no token loss, having		 implemented in this way
requires protocols wishing to integrate with it to call
		 instead. This significantly increases integration
friction, as it deviates from standard behavior.

There is no benefit for any third-party protocol to know how much sBTC a
user currently has locked.

Another point to consider is that users can create always-reverting
withdrawals by setting the maximum fee to 0. Withdrawals without a fee
will generally be rejected. Although uncommon, there may be potential
situations where this can be exploited.

[M-01] sBTC Balance Logic Causes
External Integration Issues

Description

8.2. Medium Findings

sbtc-withdrawal::initiate-withdrawal-request

(try! (ft-burn? sbtc-token amount owner))
(ft-mint? sbtc-token-locked amount owner)

(define-read-only (get-balance (who principal))
 (ok (+ (ft-get-balance sbtc-token who) (ft-get-balance sbtc-token-locked who))

)

transfer

get-balance

get-balance

sbtc-token::get-

SIP-10

transfer

sBTC

balance-available

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L26-L27
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L26-L27
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#balance-of
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L105-L111
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L105-L111

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

13

Recommendation
Modify		 to return the balance of the underlying		 .
Remove the				 function and add a
	 function to show how much users have locked at that moment.

get-balance sbtc-token

get-balance-available get-balance-

locked

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

14

Description

[M-02] Inability to Rotate Signers to
Standard Principals with More Than 15 Keys

When a new signer principal and subsequent data need to be changed, the	
						 function is invoked. This
function allows the current signer principal to be changed to a standard
principal, which can consist of up to 128 public keys.

However, the implementation fails when more than 15 keys are provided
due to an incorrect maximum iterator buffer length in the
 function.

The maximum iterator size can reach 4352 bytes, calculated as: 33
(pubkey length) * 128 (maximum number of keys) + 128 (one byte length
prefix for each address). However, the code currently uses the value 510,
which restricts the algorithm to 510/(33 key size + 1 byte length prefix)
=> 15 keys.

This limitation significantly impacts the functionality of the API. If, in the
future, the community requires more than 15 signers, it will not be possible.

Recommendation
Adjust the iterator buffer length from 510 to 4352, and update the
	 max_length parameter to	 .

Note: The comments within the function are also incorrect, but these are
addressed in another issue.

Issue was also identified by the	 developers and resolved before
deployment.

sbtc-bootstrap-signers::rotate-keys-wrapper

(concat-pubkeys-

fold

;; Concatenate a pubkey buffer with a length prefix.
;; The max size of the iterator is 4239 bytes, which is (33 * 128) 4224 bytes
;; for the public keys and 15 bytes for the length prefixes.
(define-read-only (concat-pubkeys-fold (pubkey (buff 33)) (iterator (buff 510)))
(let
(

(pubkey-with-len (concat (bytes-len pubkey) pubkey))
(next (concat iterator pubkey-with-len))

)
(unwrap-panic (as-max-len? next u510))

)
)

as-max-len? u4352

sBTC

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

15

Description

[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks

Users holding sBTC can withdraw it from Stacks to Bitcoin by calling the
						 function. The withdrawal
process involves several steps:

•	 The user initiates the withdrawal, specifying the amount they wish to
withdraw and the maximum fee they are willing to pay (in BTC).

•	 The native Stacks core logic attempts to finalize the transaction on
Bitcoin or refund it on Stacks if it fails or cannot be executed.

For step (2), the current signer principal must either call
			 when the withdrawal is correct and executable or
call				 to reject the withdrawal. Accepting and
rejecting are necessary to burn or unlock the user’s pending	 .

It is important to note that when users initiate a withdrawal, they must
specify the maximum fee they are willing to pay for the transaction to be
executed on the Bitcoin network.

This mechanism is susceptible to griefing because a malicious attacker can
continuously initiate withdrawals with a maximum fee set to 0. These
requests will ultimately be rejected, as without a fee, the underlying peg-
out mechanism will eventually lose funds. However, by rejecting the
request, i.e., calling				 , the principal signer
incurs an execution fee on Stacks.

The overall execution fee for initiating a withdrawal is comparable to that
of rejecting one. Even if bulk rejection is used via the
function, the attacker does not face a significant cost-to-damage ratio
concerning block costs.

| Action | Write Length | Write Count | Read Length | Read Count | Runtime
| | -- | ------------ |
----------- | ----------- | ---------- | ------- | | 			
| 216 | 6 | 38,425 | 22 | 78,005 | | 				 | 22 | 5 |
59,301 | 31 | 104,363 | |			 (average on 300 rejected
requests) | 22 | 5 | 45,897 | 28 | 11,607 |

In practice, the effectiveness of the attack, meaning the attacker’s loss
compared to the signer’s loss (or cost-to-damage ratio), depends on the
aforementioned block costs coupled with dynamic execution fees, which
are network-determined.

Regardless of the cost to the attacker, allowing this situation to persist will
result in rejected transactions, even if caused by the mistake of organic
users, which only the protocol signer can execute.

sbtc-withdrawal::initiate-withdrawal-request

accept-

sBTC

withdrawal-request

reject-withdrawal-request

reject-withdrawal-request

reject-withdrawal-request

initiate-withdrawal-request

complete-withdrawal

complete-withdrawal

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

16

Recommendation
Implement a minimum max fee value for initiating withdrawal requests.
Initially, it can be set to 0 and only increased if the indicated attack is
observed in the wild (ITW).

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

17

Description

[M-04] Random Withdrawals Can Be Added
Through Inadequately Validated Withdrawal
Creation API

The Emily API includes routes for creating orders, such as deposits or
withdrawals, which ultimately write data to the underlying DynamoDB
database.

Currently, creating a withdrawal through the API is not restricted by an
API key or any permission system. Without such restrictions, an attacker
can intentionally spam the API with HTTP requests, leading to database
saturation, increased AWS costs, and potential loss of funds.

When a withdrawal entry is created via the
					 :

•	 There is no requirement for an authorization mechanism or API key.
•	 The	 body is a JSON object mapped to a 				

				 type entry.
•	 All data to be saved in the database is directly taken from the request

body.
•	 The data is validated only to ensure no corruption with previously

saved data, a check that always passes for new entries.
•	 Finally, the data is directly saved into the database withdrawal table.

An attacker can exploit the		 endpoint with arbitrary inputs
due to the absence of any checks, leading to increased database costs
and potential denial of service (DoS) attacks on the database.

Recommendation
Implement a permission system to ensure that only holders of trusted API
keys can add withdrawals. Additionally, enhance the validation of the
payload itself. Specifically, add checks to the				 	
				 payload:

•	 			 must be a valid Stacks block hash.
•	 			 must correspond to the indicated			

			 .
•	 		 must be a valid Bitcoin address.

POST /withdrawal →

POST

CreateWithdrawalRequestBody

handlers::withdrawal::create_withdrawal

/withdrawal

CreateWithdrawalRequestBody

stacks_block_hash

stacks_block_hash

recipient

stacks_block_height

https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/routes/withdrawal.rs#L41-L51
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/withdrawal/requests.rs#L26-L39
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L147-L178
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L147-L178
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L179-L180
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L179-L180
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L181-L182
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/withdrawal/requests.rs#L26-L39

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

18

When a new signer principal is added and subsequent data changes are
required, the							 function is
invoked. Within this function,				 is called to generate
the corresponding Stacks standard principal derived from the provided
public keys.

During the execution of			 , the		 function
is used twice to convert unsigned integers to bytes. This function relies on
a byte array,		 , which is incorrectly implemented.
Specifically,		 returns the same value () for both the
50th and 51st elements, meaning that converting the integer 50 results in
the byte value 51.

Although the function is incorrectly implemented, there is no direct
impact at present, as there is no call that uses 50 as an input value.

In one instance, within the				 function, it is always
called with an 80 offset, ensuring that the value 50 is never reached:

In another instance, the	 function is called with a buffer length
of at most 33, again avoiding the value 50.

[L-01] Duplicate Entry in BUFF_TO_BYTE

Description

8.3. Low Findings

(concat (uint-to-byte (+ u80 m)) ;; “m” in m-of-n
(concat (uint-to-byte (+ u80 (len pubkeys))) ;; “n” in m-of-n

(define-read-only (bytes-len (bytes (buff 33)))
(unwrap-panic (element-at BUFF_TO_BYTE (len bytes)))

)

Recommendation
In the			 array, insert the correct value	 at the 50th
index position.

BUFF_TO_BYTE

BUFF_TO_BYTE

BUFF_TO_BYTE 0x33

sbtc-bootstrap-signers::rotate-keys-wrapper

pubkeys-to-principal

pubkeys-to-principal

pubkeys-to-spend-script

uint-to-byte

bytes-len

0x32

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L85-L87
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L85-L87
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L131-L133
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L131-L133

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

19

Description

[L-02] Inconsistent Handling of Dust
Limit on Deposits and Withdrawals

To ensure the Bitcoin network accepts a BTC transfer, the minimum
number of satoshis that can be transferred, known as the dust limit,
is verified during each withdrawal and deposit. However, there are
inconsistencies in how this limit is interpreted and in the accompanying
comments.

For		 :

•	 No comment is provided at the declaration.
•	 A comment at the check location indicates the amount must be strictly
•	 greater than the dust limit.
•	 Despite this, the dust limit is allowed to be met.

For		 :

•	 A comment at the declaration suggests the limit should be allowed for	
withdrawal.

•	 No comment is present at the check location.
•	 The dust limit is not allowed to be met.

Due to the current implementation, users can deposit amounts equal to
the dust limit but cannot withdraw them. Consequently, users who deposit
dust-limit amounts will need to deposit additional satoshis to withdraw.

deposits

withdrawals

(define-constant dust-limit u546)

;; Check that amount is greater than dust limit
(asserts! (>= amount dust-limit) ERR_LOWER_THAN_DUST)

;; The minimum amount of sBTC you can withdraw
(define-constant DUST_LIMIT u546)

(asserts! (> amount DUST_LIMIT) ERR_DUST_LIMIT)

Recommendation
Ensure the dust limit is interpreted consistently in both scenarios.
Additionally, update the comments to reflect this uniform interpretation.

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

20

[L-03] Authorization Mechanism Is
Poorly Applied in The sBTC Contract

Description

Recommendation
Implement specific role-checking functions in			 , such as
			 and 			 , and apply them
accordingly to each		 function in the		 contract.

The new authorization schema of the	 is implemented using an	
	 		 map to associate protocol roles with contract
principals, and an		 	 map to associate, in reverse,
the contract principal with the active role.

This new implementation is correctly utilized in the			
contract to ensure that each specific contract can only perform its
intended operations.

However, in the	 contract, all		 functions are
checked in such a way that any authorized contract type can perform any
action as long as it is recognized as itself.

For instance, consider the				 function, which is
invoked when locking sBTC before a withdrawal:

sBTC

active-protocol-contracts

active-protocol-roles

sbtc-registry

sbtc-token protocol-*

sbtc-token::protocol-lock

(define-public (protocol-lock (amount uint) (owner principal) (contract-flag
(buff 1)))
(begin
(try!
(contract-call? .sbtc-registry is-protocol-caller contract-flag contract-caller)

(try! (ft-burn? sbtc-token amount owner))
(ft-mint? sbtc-token-locked amount owner)

)
)

The					 function is called with the data
provided by the contract. This implies that any future deposit contract can
implement and call this function, as long as it passes its role (depositor).

This completely undermines the purpose of such a mechanism, as some
functions should not be arbitrarily called by any approved contract.

sbtc-registry::is-protocol-caller

sbtc-registry

is-protocol-withdrawer is-protocol-depositor

protocol-* sbtc-token

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

21

[L-04] Retry Mechanism Lacks Exponential
Backoff Strategy

Description

Recommendation
Implement an exponential backoff retry mechanism with jitter.

for _ in 0..retries

This approach can lead to high CPU usage and potential throttling of the
database service, and in extreme cases, it may even cause database
failures.

The Emily API has implemented a retry mechanism for handling database
update failures in several scenarios:

•	 When adding a chainstate () , the execution flow	
reaches						 .

•	 When updating deposits (), the flow reaches		
 	 						 .

•	 When updating withdrawals () , it reaches 		
 							 .

In each of these instances, the retry mechanism does not incorporate a
backoff period between retries, resulting in immediate retry attempts
within a loop:

POST /chainstate

accessors::add_chainstate_entry_with_retry

PUT /deposit

accessors::pull_and_update_deposit_with_retry

PUT /withdrawal

accessors::pull_and_update_withdrawal_with_retry

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

22

Description

[L-05] Resolve Outstanding Critical
TODOs and Missing Features

Throughout the Emily codebase, there are 34 different TODOs. These
TODOs highlight a range of issues, from missing unit tests:

to critical issues that need resolution before deployment:

There is essential functionality that currently does not work, such as
obtaining the deposit API amount, which is noted with a TODO and must
be addressed before deployment. See the relevant code here.

Recommendation
Resolve the TODOs before deployment. If resolving all is not feasible, at
least address the known critical issues, as the project cannot be deployed
otherwise.

/// TODO(393): Add handler unit tests.

/// TODO

//(TBD): This is the only value that will work at the moment because the API needs to

/// TODO(TBD): Get the amount from some script related data somehow.

https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L294-L295

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

23

In the			 contract, a	 command is included in each
public function to ensure proper event emissions. In nearly all cases, all
arguments are printed. However, the			 function is an
exception, as the		 principal is not emitted.

The absence of this parameter increases the difficulty for off-chain
systems to monitor	 transactions.

[QA-01] Incomplete sBTC Logging on
Deposit Creation

Description

8.4. QA Findings

sbtc-registry print

complete-deposit

recipient

Recommendation
Include the		 in the		 command within the
				 function.

recipient print

sBTC

sbtc-

registry::complete-deposit

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

24

There are several typographical errors and opportunities for slight wording
improvements throughout the codebase within scope:

•	 			 :The word		 should be corrected to	
	 .

•	 			 : Although		 is a valid term, it is
less commonly used. Replacing it with		 would be more
appropriate.

Description

[QA-02] Typographical Errors

Recommendation
Make all the suggested changes.

sbtc-registry#L25 withdrawaled

withdrawn

holdings.clar#L119 unexistent

nonexistent

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

25

Description

[QA-03] Remove Unused Constants

Within the codebases under review, there are several
instances of unused constants:

•	 In			 :			 and

•	 In		 :			
•	 In			 :

Recommendation
Remove these constants to enhance code readability, reduce clutter, and
slightly decrease runtime read counts and costs. Additionally, after their
removal, rebase the error codes to eliminate any gaps.

sbtc-registry ERR_INVALID_REQUEST_ID

ERR_MULTI_SIG_REPLAY

sbtc-token ERR_NOT_AUTH

sbtc-withdrawal MAX_ADDRESS_VERSION_BUFF_32

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

26

Description

[QA-04] Token Symbol Variable Length
May Constrain Future Symbol Updates

The		 contract currently defines			 as
		 and includes functionality to update it using
			 .

However, SIP-10 specifies that token symbols should be of type
		 . Although the current symbol fits within the
10-character limit, this restriction could hinder future updates to longer
symbols that would be valid under SIP-10.

sbtc-token token-symbol

(string-ascii 10)

protocol-set-symbol

(string-ascii 32)

Recommendation
Modify the		 variable type to			 to align
with SIP-10 specifications and provide maximum flexibility for future
symbol updates.

token-symbol (string-ascii 32)

https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#symbol

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

27

Description

[QA-05] sBTC Token Name and Symbol
Should Not Be Changeable

The	 token contract currently allows for the modification of the
token’s name and symbol.

The name and symbol, along with the contract address, should remain
immutable. Changing these elements can lead to user confusion for any
external integrators or price aggregators that rely on them in their user
interfaces.

While SIP-10 does not explicitly address this, it is generally understood
that once a fungible token is launched, its name and symbol should remain
unchanged.

Recommendation
Remove the			 and				 functions
from the		 contract. Additionally, convert the variables storing
this data into constants to ensure they remain unchangeable.

sBTC

protocol-set-name protocol-set-symbol

sbtc-token

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

28

Description

[QA-06] Simplification Opportunities in
sBTC Operations

(define-constant ERR_KEY_SIZE_PREFIX (unwrap-err! ERR_KEY_SIZE (err true)))
(define-constant ERR_KEY_SIZE (err u200))

In each case, the paired error code is never used, and when using the	
			 value, an extra offset of 10 is added. Instead
of the elaborate schema, directly hardcode the calculated value with the
added index, avoiding an extra addition during a failed bulk iteration call.

ERR_<ACTION>_INDEX_PREFIX

Within the contracts, there are several opportunities for
implification that can enhance code readability, reduce code size, and
potentially lower runtime execution costs.

In		 :

•	 	 : The check						 can be
simplified to a direct comparison 					 .

•	 	 : The variable			 is unused, and is 		
 redundantly called again.

•	 Use						 instead of 		
	 in the functions			 ,	
			 	 , and			 	 .

In		 :

•	 Use						 instead of		
 in				 .

The entire				 error system can be simplified
wherever it appears:

•	 In all instances, the error code calculation, such as for withdrawals: 	
								 , can be
rewritten using a single	 operation:					
	 .

•	 The constants			 ,				 , 	
and					 are declared with the direct
attribution of an error value immediately next to them.

Example for				 :

sBTC

sbtc-withdrawal

L177 (is-eq (- requested-max-fee fee) u0)

(is-eq requested-max-fee fee)

L254 current-request-id

(get request-id withdrawal)

sbtc-registry::get-current-signer-principal

get-current-signer-data accept-withdrawal-request

reject-withdrawal-request complete-withdrawals

sbtc-deposit

sbtc-registry::get-current-signer-principal

get-current-signer-data complete-deposit-wrapper

ERR_<ACTION>_INDEX_PREFIX

(err (+ ERR_WITHDRAWAL_INDEX_PREFIX (+ u10 index)))

+ (err (+ ERR_WITHDRAWAL_INDEX_

index))

ERR_KEY_SIZE_PREFIX ERR_DEPOSIT_INDEX_PREFIX

ERR_WITHDRAWAL_INDEX_PREFIX

sbtc-bootstrap-signers

Implement the suggested changes.

(define-constant ERR_KEY_SIZE_PREFIX u210)
;; ... code ...
(err (+ ERR_KEY_SIZE_PREFIX index))

Recommendation

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L265
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L177
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L254
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L154
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L193
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L228
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-deposit.clar#L40

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

29

[QA-07] sBTC Contracts Structure and
Style Inconsistencies

Description
The Clarity contracts that make up	 generally follow a consistent
structure and coding style, except for	 	 , which is intentionally
written in a simpler manner. However, there are minor differences and
inconsistencies among the contracts:

1.	 			 	 and		 	 use lowercase
constants, while 		 uses uppercase constants.

2.	 The contracts slightly deviate from a common contract layout.
Specifically:

•	 	 		 uses 	 as a header,
whereas		 uses 		 , and
uses		 .
•	 Headers in 			 start with uppercase letters
and differ by using	 (as opposed to) and		
		 (as opposed to). 		
•	 			 does not adhere to any pattern followed by

the other contracts.
•	

3.	 			 includes placeholders in empty sections
(in	 and), while while the other contracts do
not use placeholders.

4.	 				 has a 3 newline gap between functions,
instead of just 1 newline. In some places,			 has 2
newline gaps between headers, instead of one (and).

5.	 The	 contract uses tabs for indentation, while the other
contracts use spaces.

Enhancing code uniformity and, in some cases, reducing contract size can
be achieved by addressing these differences.

sBTC

sbtc-token

sbtc-bootstrap-signers sbtc-deposit

sbtc-withdrawal

sbtc-bootstrap-signers errors

sbtc-deposit error codes sbtc-registry

Error codes

sbtc-registry

Maps data maps

Variables vars

sbtc-withdrawal

sbtc-bootstrap-signers ;;

data vars data maps

sbtc-bootstrap-signers

sbtc-registry

[1] [2]

sbtc-token

Recommendation
1.	 Standardize the use of uppercase for constants.
2.	 Adopt a uniform contract layout for all contracts. The layout of		

	 	 appears to be more appropriate.
3.	 Remove the placeholder strings.
4.	 Ensure there is only one newline between code elements.
5.	 Use tabs for indentation in all contracts instead of spaces. This change

would also reduce code size and implicitly lower runtime costs.

sbtc-

registry

;;

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L21-L24
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L128-L130
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L21-L24
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L17-L18
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L140-L141

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

30

[QA-08] Use Constants Where
Appropriate

Description
To enhance code readability, it is recommended to use meaningful
constants where applicable. Below are instances within the current
codebases where constants can be utilized, along with suggestions:

•	 In				 :
	գ At L88, replace	 and the		 comment with the

constant			 .
	գ Replace all instances of	 with		 or	 .
	գ At L106, replace	 with

and	 with					 .

sbtc-bootstrap-signers

0xae CHECKMULTISIG

OP_CHECKMULTISIG

u80 OP_N_BASE OP_N

0x14 ADDRESS_VERSION_MAINNET_MULTISIG

0x15 ADDRESS_VERSION_TESTNET_MULTISIG

Recommendation
Implement the suggested changes.

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L88
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L106

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

31

[QA-09] Misleading, Outdated, or
Incomplete Comments in sBTC Contracts

Description
The codebase contains comments that are either misleading or outdated.

Instances:

•	 			 : The comment		 should be
updated to		 because the				 is
limited to 650 elements.

•	 						 : The comment regarding the
iterator’s maximum size is incorrect. The total maximum size is 4352,
calculated as 33 (public key length) * 128 (maximum number of keys)
+128 (one-byte length prefix for each address).

•	 				 : The comment
				 should be changed to
	 	 as it is used in the context of rejection.
•	 			 : The function description states
•	 						 	 , but the output is

a tuple with data, not a list of principals. It should be updated to reflect
the complete data it returns.

•	 			 	 : The function documentation incorrectly	
mentions returning the fields of			 instead of the
correct				 .

•	 				 : The			 function
documentation is incorrectly copied from the			
function.

•	 			 	 : The			 function
documentation incorrectly states				 	 . It
should be corrected to indicate that the function stores a finalized
deposit request.

Recommendation
Address the mentioned instances as recommended above.

sbtc-deposit.clar#L79 (up to 1000)

(up to 650) complete-deposits-wrapper

sbtc-bootstrap-signers.clar#L116-L118

sbtc-withdrawal.clar#L209 ;; Call into registry to

confirm accepted withdrawal to reject	

withdrawal

sbtc-registry.clar#L115 returns

the current signer set as a list of principals

sbtc-registry.clar#L97

withdrawal-sweeps

completed-withdrawal-sweep

sbtc-registry.clar#L108-L109 get-deposit-status

get-completed-deposit

sbtc-registry.clar#L249 complete-deposit

Store a new insert request

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-deposit.clar#L79
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L116-L118
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L209
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L115
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L97
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L108-L109
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L249

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

32

[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data

Description

Recommendation
Ensure that any new contract type passed to either
					 or
					 is validated to be one of the
existing, supported values.

The			 contract maintains two mappings: one for
authorized principals to authorization types ()
and another in reverse ().

There are only three valid protocol contract types:

sbtc-registry

active-protocol-roles

active-protocol-contracts

;; Protocol contract type
(define-constant governance-role 0x00)
(define-constant deposit-role 0x01)
(define-constant withdrawal-role 0x02)

The protocol type can be updated via the
		 function. However, this function lacks validation for
new values being added. Similarly, the
			 function, which invokes the registry update
function, also does not perform any validation.

As a result, an incorrect contract type might mistakenly be passed and
accepted as valid by the current implementation. Such instances should
trigger a reversion to alert callers, rather than being accepted without
validation. Due to the peculiar manner in which protocol contract
validations are conducted, there are no other side effects.

sbtc-registry::update-

protocol-contract

sbtc-bootstrap-signers::update-

protocol-contract-wrapper

sbtc-

registry::update-protocol-contract sbtc-bootstrap-signers:

:update-protocol-contract-wrapper

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

33

[QA-11] Redundant Protocol Mapping in
sBTC Contracts

Description
The new authorization schema for the sBTC contracts includes
unnecessary operations.

The implementation uses the				 map to link
protocol roles to contract principals and the
map to do the reverse, associating contract principals with active roles.

The				 map is utilized solely in the
	 function, where it is checked alongside			 :

active-protocol-contracts

active-protocol-roles

active-protocol-roles is-protocol

-caller active-protocol-contracts

;; Verify that the contract-caller is a protocol contract
(asserts! (is-eq (some contract)
(map-get? active-protocol-contracts contract-flag)) ERR_UNAUTHORIZED)

;; Verify that the flag matches the contract-caller
(asserts! (is-eq (some contract-flag)
(map-get? active-protocol-roles contract)) ERR_UNAUTHORIZED)

Since the principal-to-role association updates both
	 and			 simultaneously in
					 , there will never be a situation
where a principal-to-role is correctly set in one map but incorrectly in the
other.

active-protocol-

contracts active-protocol-roles sbtc-

registry::update-protocol-contract

Recommendation
The				 map is redundant and should be removed to
lower execution costs.

:

active-protocol-roles

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

34

[QA-12] Some sBTC Protocol Setter
Functions Lack Corresponding Role

Description
The new sBTC authorization mechanism mandates that only one contract
can hold any given role at a time. Currently, there are only three roles
defined:

;; Protocol contract type
(define-constant governance-role 0x00)
(define-constant deposit-role 0x01)
(define-constant withdrawal-role 0x02)

Upon mapping all protocol functions to their respective calls, it becomes
evident that the		 functions			 ,
		 and			 lack associated roles that can
execute them. Meanwhile, the three existing roles are already assigned:

sbtc-token protocol-set-name protocol

-set-symbol protocol-mint-many

(map-set active-protocol-contracts governance-role .sbtc-bootstrap-signers)
(map-set active-protocol-contracts deposit-role .sbtc-deposit)
(map-set active-protocol-contracts withdrawal-role .sbtc-withdrawal)

As a result, if the sBTC team and governance decide to modify any
metadata on the sBTC contract (although changing the name and symbol
is not recommended and is discussed in another issue), they must call
								 with an
arbitrary role that does not conflict with the existing roles (0x00 - 0x02).
This role must be assigned to a different principal than any of the current
three contracts (e.g., assigning it to				 itself)
before calling the		 functions.

The absence of designated roles for these functions necessitates a
workaround of the existing authorization mechanism by the development
team.

sbtc-bootstrap-signers::update-protocol-contract-wrapper

current-signer-principal

sbtc-token

Recommendation
Establish a metadata role to manage the			 and 		
			 functions, and a minter role to handle the
			 and			 functions. If multiple
contracts per role are needed, consider removing the current limitation of
the authorization mechanism that restricts each role to a single principal.

protocol-set-name

protocol-set-symbol

protocol-mint-many protocol-mint

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

35

[QA-13] Outdated Emily API Domain
Name Generation Schema
Documentation for Non-Production
Environments

Description
In the Emily TypeScript CDK deployment scripts, when configuring the
APIs via the						 functions, an
Amazon Route 53 DNS is used to set up specific domains for the APIs.

The custom domain varies depending on whether the deployment stage is
production or not, as indicated in the comments:

emily-stack::createOrUpdateSpecificApi

// Create the custom domain name of the format:
// if stage != prod: [stage].[purpose].[customRootDomainNameRoot]
// if stage == prod: [purpose].[customRootDomainNameRoot]

However, the actual implementation incorrectly swaps the stage with
purpose placeholders for non-production environments:

const

customDomainName = `${purposePrefix}${stagePrefix}${customRootDomainNameRoot}`;

This results in the domain ending as
				 , which is actually the intended design due
to a DNS limitation explained in PR#1112.
[customRootDomainNameRoot]

[purpose].[stage].

Recommendation
In the						 function, update the
custom domain format comments to reflect the current design accurately.

emily-stack::createOrUpdateSpecificApi

https://github.com/stacks-network/sbtc/pull/1112

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

36

[QA-14] Simplification of EmilyStackUtils
Operations

Description
The 					 class offers utility methods
for the Cloud Formation Stack. There are two functions with redundant
operations that can be streamlined:

•	 The			 function, in the worst-case scenario, calls
the (non-cached)			 function four times.

•	 In the			 function, the branch			
										
is not reachable.

By simplifying or removing redundant code, the codebase becomes easier
to maintain.

emily-stack-utils::EmilyStackUtils

isDevelopmentStack

getStageName

getLambdaGitIdentifier throw new

Error(‘Failed to get the git identifier for the lambda.’);

Recommendation
Revise the			 function to make a single call to
		 . An example implementation is as follows:

isDevelopmentStack

isDevelopmentStack

public static isDevelopmentStack(): boolean {
return [

Constants.DEV_STAGE_NAME,
Constants.LOCAL_STAGE_NAME,
Constants.UNIT_TEST_STAGE_NAME,
Constants.TEMP_STAGE_NAME

].includes(this.getStageName());
}

In the				 function, remove the second check for
			 being equal to		 .

getLambdaGitIdentifier

this.lambdaGitIdentifier undefined

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

37

[QA-15] Cleanup EmilyStack Class

Description
The				 class has several areas that
would benefit from a code cleanup:

emily-stack::EmilyStack

1.	 Remove Unused Imports

2. The result of calling		 is stored in the
 constant, which is never used. The function can be called without
 saving the return value.

3. The JSDoc		 tags for the					
 function indicate	 and	 parameters, while the
 actual parameters are		 and		 .
 Ensure the JSDoc matches the actual implementation.

4. DynamoDB automatically projects the primary key attributes of the
 base table into all Global Secondary Indexes (GSIs) and Local
 Secondary Indexes (LSIs). Therefore, adding them again in the
		 of the secondary index is redundant.

For example, adding		 (partition key) and			
			 (sort key) to the secondary index			
is unnecessary. For the		 and		 tables, remove the
primary key attributes from the secondary index			 field.

If duplicating the fields is intentional, add a comment to indicate that they
are redundantly added so that no developer incorrectly assumes their
indexing is optional or dependent on their presence in the			
		 entry.

import * as logs from “aws-cdk-lib/aws-logs”;
import * as cr from “aws-cdk-lib/custom-resources”;

createOrUpdateApi emilyApis

@param createOrUpdateDepositTable

tableId tableName

depositTableId depositTableName

nonKeyAttributes

BitcoinTxid

BitcoinTxOutputIndex

nonKeyAttributes

withdrawals deposits

nonKeyAttributes

nonKeyAttributes

Recommendation
Implement the suggested code alterations.

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Projection.html

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

38

[QA-16] Typographical Errors in Emily

Description
The Emily API codebase contains several typographical errors:

•	 In			 :
	գ 		 should be corrected to
	գ 	 should be corrected to

•	 In						 :
	գ 	 should be corrected to
	գ 	 should be corrected to

•	 In 						 and
				 :	 :

	գ 		 should be corrected to
	գ 	 should be corrected to
	գ 	 should be corrected to

•	 In							 and
							 :

	գ 	 should be corrected to

•	 In					 :
	գ 		 should be corrected to

•	 In 					 :
	գ The		 error should be renamed to

•	 In						 and
							 :

	գ 		 should be corrected to
	գ 	 should be corrected to

•	 						 :	
	գ 	 should be corrected to

•	 In						 :
	գ 	 should be corrected to
	գ 	 should be corrected to

•	 In						 :
	գ 	 should be corrected to
	գ 	 should be corrected to
	գ 		 should be corrected to

emily-stack-utils

apiJsonDefiniton apiJsonDefinition

exercize exercise

handler\src\api\handlers\internal.rs

occured occurred

intendeded intended

handler\src\api\models\common\mod.rs

handler\src\database\entries\mod.rs

transaciton transaction

articacts artifacts

fulill fulfill

handler\src\api\models\deposit\requests.rs

handler\src\api\models\withdrawal\requests.rs

singlular singular

handler\src\api\routes\mod.rs

definitiions definitions

handler\src\common\error.rs

Reorganzing Reorganizing

handler\src\database\entries\deposit.rs

handler\src\database\entries\withdrawal.rs

chronoloical chronological

chainsates chainstates

handler\src\database\entries\deposit.rs

depoit deposit

handler\src\database\entries\mod.rs

Parition Partition

serialied serialized

handler\src\database\accessors.rs

exhasutive exhaustive

sigular singular

parition_key partition_key

Recommendation
Correct all identified typographical errors.

Security Review

sBTC

CONTENTS
1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Summary of Findings
8.1. High Findings

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard	
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features

8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in sBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

2
3
4
4
5
5
5
5
6
7
8
10
10

12
12

14

15

17

18
18
19

20

21

22

23
23

24
25
26

27

28

29

30
31

32

33

34

35

36
37
38
39

39

[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Description
In the Emily TypeScript CDK deployment scripts, several key values are
directly hardcoded into the code instead of being moved to the existing
	 class.

•	 In				 , the lambda timeout of 5 seconds
should be moved to a constant.

•	 In 				 , the request limits (rate and burst)
should be moved into separate constants.

•	 In 			 ,			 , and			 ,
the retry count for database updates is hardcoded as 15 and should be
set as a constant.

Generally, using constants instead of hardcoding values improves code
readability and simplifies maintenance when configuration changes are
needed.

Constants

emily-stack.ts#L309-L310

emily-stack.ts#L413-L415

chainstate.rs#L189 deposit.rs#L363 withdrawal.rs#L253

Recommendation
Implement constants in the specified instances.

