@ Cla

rityAlliance

sBTC SECURITY REVIEW

Conducted by:

KRISTIAN APOSTOLOV, ALIN BARBATEI (ABA), MARCHEV

JANUARY 5TH, 2025

|
CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API . I . .
8.2 MediumFindings 12 They have disclosed vulnerabilities that have saved millions in
[M-01] sBTC Balance Logic Causes External 12 . .
Integration Issues ° live TVL and conducted thorough reviews for some of the largest
[M-02] Inability to Rotate Signers to Standard 14 .
Principals with More Than 15 Keys projects across the Stacks ecosystem.
[M-03] sBTC Withdrawal Mechanism Is 15
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through 17

1. About Clarity Alliance

Clarity Alliance is a team of expert whitehat hackers specialising in
securing protocols on Stacks.

-
oom\lmmmmmbhwm

Inadequately Validated Withdrawal Creation API Learn more about Clarity Alliance at clarityalliance.org.
8.3.Low Findings 18
[L-01] Duplicate Entry in BUFF_TO_BYTE 18
[L-02] Inconsistent Handling of Dust Limit on 19
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in 20
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff 21
Strategy
[L-05] Resolve Outstanding Critical TODOs and 22
Missing Features
8.4. QA Findings 23
[QA-01] Incomplete sBTC Logging on Deposit 23
Creation
[QA-02] Typographical Errors 24
[QA-03] Remove Unused Constants 25
[QA-04] Token Symbol Variable Length May 26

Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not 27

Be Changeable

[QA-06] Simplification Opportunities in SBTC 28
Operations

[QA-07] sBTC Contracts Structure and Style 29
Inconsistencies

[QA-08] Use Constants Where Appropriate 30
[QA-09] Misleading, Outdated, or Incomplete 31
Comments in sSBTC Contracts

[QA-10] sBTC Protocol Contract Type Can 32
Be Updated With Arbitrary Data

[QA-11] Redundant Protocol Mapping in sSBTC 33
Contracts

[QA-12] Some sBTC Protocol Setter Functions Lack 34
Corresponding Role

[QA-13] Outdated Emily API Domain Name 35
Generation Schema Documentation for

Non-Production Environments

[QA-14] Simplification of EmilyStackUtils Operations 36

[QA-15] Cleanup EmilyStack Class 37
[QA-16] Typographical Errors in Emily 38
[QA-17] Use Constants Instead of Magic 39

Numbers in Emily APIs

Security Review

sBTC

http://clarityalliance.org

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8.Summary of Findings
8.1. High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4.QAFindings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmkbwn

27

28

29

30
31

32
33
34
35
36
37

38
39

2. Disclaimer

This report is not, nor should be considered, an “endorsement” or
“disapproval” of any particular project or team. This report is not, nor
should be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts
Clarity Alliance to perform a security assessment.

This report does not provide any warranty or guarantee regarding
the absolute bug-free nature of the technology analyzed, nor do
they provide any indication of the technologies proprietors, business,
business model or legal compliance.

This report should not be used in any way to make decisions around
investment or involvement with any particular project. This report
in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive
assessing process intending to help our customers increase the
quality of their code while reducing the high level of risk presented by
cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level
of ongoing risk. Clarity Alliance’s position is that each company and
individual are responsible for their own due diligence and continuous
security. Clarity Alliance’s goal is to help reduce the attack vectors and
the high level of variance associated with utilizing new and consistently
changing technologies, and in no way claims any guarantee of security
or functionality of the technology we agree

to analyze.

The assessment services provided by Clarity Alliance are subject to
dependencies and under continuing development. You agree that your
access and/or use, including but not limited to any services, reports,
and materials, will be at your sole risk on an as-is, where-is, and as-
available basis.

Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. The assessment reports
could include false positives, false negatives, and other unpredictable
results. The services may access, and depend upon, multiple layers of
third parties. Notice that smart contracts deployed on the blockchain
are not resistant from internal/external exploit. Notice that active
smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Clarity Alliance does
not guarantee the explicit security of the audited smart contract,
regardless of the verdict.

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

3. Introduction

A time-boxed security review of sBTC, where Clarity Alliance
reviewed the scope and provided insights on improving the
protocol.

4. About sBTC

sBTC is a 1:1 Bitcoin-backed asset that enables users to utilize their
BTC within DeFi, decentralized applications, and other blockchain-
based ecosystems. Designed to bring Bitcoin’s security and liquidity
into programmable environments, sBTC expands Bitcoin’s utility
beyond simple transactions.

Bitcoin Finality

All Stacks transactions, including those that involve sBTC, benefit
from 100% Bitcoin finality. This means transactions on Stacks, once
confirmed, are as irreversible as Bitcoin’s.

Programmability

Access a world of new use cases for Bitcoin thanks to Clarity, a
full featured smart contract language optimized for security and
predictability.

Censorship-resistance

sBTC operations happen on the Bitcoin main chain, meaning that
external actors cannot censor these operations.

Source: Stacks sBTC

https://www.stacks.co/sbtc

|
CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels

5. Risk Classification

6.Security Assessment Summary Severity Impact: High | Impact: Medium | Impact: Low
7.Executive Summary

8. Summary of Findings

Lo RRdings Likelihood: High Critical High Medium

-
oom\lmmmmmbhwm

[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API

8.2. Medium Findings 12 H H . H H H
[M-01] sBTC Balance Logic Causes External 12 Likelihood: Medium ngh Medium Low
Integration Issues

[M-02] Inability to Rotate Signers to Standard 14
Principals with More Than 15 Keys Likelihood: Low Medium Low Low
[M-03] sBTC Withdrawal Mechanism Is 15

Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through 17
Inadequately Validated Withdrawal Creation API

8.3.Low Findings 18
[L-01] Duplicate Entry in BUFF_TO_BYTE 18 5.1 Impact
[L-02] Inconsistent Handling of Dust Limit on 19
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in 20
The sBTC Contract H - H i H H
i N N N e« High - leads to a significant material loss of assets in the
Strategy H ifi
[L-05] Resolve Outstanding Critical TODOs and 22 prOtOCOI or SIgmflcantly harms a grOUp Of users.
Missing Features

8.4. QA Findings 23
1ap-Otlincompiete SETC Logging on Peposit = e Medium - only a small amount of funds can be lost (such as
[QA-02] Typographical Errors 24 H - H
OREGE e B = leakage of value) or a core functionality of the protocol is
[QA-04] Token Symbol Variable Length May 26 affected

Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not 27

Be Changeable
8 AP L 28 X X .
e mplfcstion Opportunites 1 SETC o Low - can lead to any kind of unexpected behavior with some
A-07] sBT I 29) . . , .
[A-07] SBTC Contracts Structure and Style of the protocol’s functionalities that’s not so critical.
[QA-08] Use Constants Where Appropriate 30
[QA-09] Misleading, Outdated, or Incomplete 31
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can 32
Be Updated With Arbitrary Data M M
[QA-11] Redundant Protocol Mapping in sSBTC 33 5. 2 LI kel I hOOd
Contracts

[QA-12] Some sBTC Protocol Setter Functions Lack 34
Corresponding Role

[QA-13] Outdated Emily AP| Domain Name 35 « High - attack path is possible with reasonable assumptions
Generation Schema Documentation for

Non-Production Environments)) that mimic on-chain conditions, and the cost of the attack is
[QA-14] Simplification of EmilyStackUtils Operations 36

[QA-15] Cleanup EmilyStack Class & relatively low compared to the amount of funds that can be
[QA-16] Typographical Errors in Emily 38

[QA-17] Use Constants Instead of Magic 39 StO'en or |OSt.

Numbers in Emily APIs

« Medium - only a conditionally incentivized attack vector, but
still relatively likely.

e Low - has too many or too unlikely assumptions or requires a
significant stake by the attacker with little or no incentive.

5.3 Action required for severity levels

o Critical - Must fix as soon as possible (if already deployed)
o High - Must fix (before deployment if not already deployed)
e Medium - Should fix

e Low - Could fix

Security Review

sBTC

|
CONTENTS

1. About Clarity Alliance 2
2. Disclaimer g
3. Introduction 4 M
4 RbouseTC a 6. Security Assessment Summary
5. Risk Classification 5
5.1.Impact 5 . . ope
5.2.Likelihood 5 This audit focused on a subset of the sBTC system, specifically
5.3. Action required for severity levels 5 . .
6. Security Assessment Summary 6 components related to Clarity and Emily, rather than the full
7.Executive Summary 7
8. Summary of Findings 8 codebase. The primary emphasis was on deposit functionality, as
8.1. High Findings 10
[H-01] Random Deposits Can Be Added Through 10 the system was not yet live for withdrawals at the time of review.
Inadequately Validated Deposit Creation API
8.2. Medium Findings 12
[M-01] sBTC Balance Logic Causes External 12
Integration Issues
[M-02] Inability to Rotate Signers to Standard 14
Principals with More Than 15 Keys are .
[M-03] sBTC Withdrawal Mechanism Is 15 o Initial analysis started at
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through 17 53cc756¢c0ddecff7518534a69bef59fadb5ab1d4
Inadequately Validated Withdrawal Creation API .
8.3.Low Findings 18 e Subsequent analysis was conducted from
[L-01] Duplicate Entry in BUFF_TO_BYTE 18
[L-02] Inconsistent Handling of Dust Limit on 19 5¢850909440a2563e8d1450696b853747ef55bf0
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in 20
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff 21
Strategy
[L-05] Resolve Outstanding Critical TODOs and 22
Missing Features
8.4. QA Findings 23
[QA-01] Incomplete sBTC Logging on Deposit 23
Creation
[QA-02] Typographical Errors 24
[QA-03] Remove Unused Constants 25
[QA-04] Token Symbol Variable Length May 26

Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not 27

Be Changeable

[QA-06] Simplification Opportunities in SBTC 28
Operations

[QA-07] sBTC Contracts Structure and Style 29
Inconsistencies

[QA-08] Use Constants Where Appropriate 30
[QA-09] Misleading, Outdated, or Incomplete 31
Comments in sSBTC Contracts

[QA-10] sBTC Protocol Contract Type Can 32
Be Updated With Arbitrary Data

[QA-11] Redundant Protocol Mapping in sSBTC 33
Contracts

[QA-12] Some sBTC Protocol Setter Functions Lack 34
Corresponding Role

[QA-13] Outdated Emily API Domain Name 35
Generation Schema Documentation for

Non-Production Environments

[QA-14] Simplification of EmilyStackUtils Operations 36

[QA-15] Cleanup EmilyStack Class 37
[QA-16] Typographical Errors in Emily 38
[QA-17] Use Constants Instead of Magic 39

Numbers in Emily APIs

Security Review

sBTC

https://github.com/stacks-network/sbtc/commit/53cc756c0ddecff7518534a69bef59fadb5ab1d4
https://github.com/stacks-network/sbtc/commit/5c850909440a2563e8d1450696b853747ef55bf0

|
CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings 12
[M-01] sBTC Balance Logic Causes External 12

Integration |
[rl]\ll(i%r’j] Il(r)wr;bsiI?tL;/etSo Rotate Signers to Standard 14 PfOtOCOl SU m ma ry

Principals with More Than 15 Keys

7. Executive Summary

Over the course of the security review, Kristian Apostolov, Alin
Barbatei (ABA), Marchev engaged with - to review sBTC. In this
period of time a total of 27 issues were uncovered.

-
oom\lmmmmmbhwm

[M-03] sBTC Withdrawal Mechanism Is 15
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through 17 Protocol Name sBTC
Inadequately Validated Withdrawal Creation API
8.3.Low Findings 18
[L-01] Duplicate Entry in BUFF_TO_BYTE 18 Date January 5th, 2025
[L-02] Inconsistent Handling of Dust Limit on 19
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in 20
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff 21
Strategy
[L-05] Resolve Outstanding Critical TODOs and 22
Missing Features
8.4. QA Findings 23
[QA-01] Incomplete sBTC Logging on Deposit 23
Creation
[QA-02] Typographical Errors 24
[QA-03] Remove Unused Constants 25
[QA-04] Token Symbol Variable Length May 26
Constrain Future Symbol Updates H H
[QA-05] sBTC Token Name and Symbol Should Not 27 Flnd |ngS COU nt
Be Changeable
[QA-06] Simplification Opportunities in SBTC 28
Operations .
[QA-07] sBTC Contracts Structure and Style 29 Severlty Amount
Inconsistencies
[QA-08] Use Constants Where Appropriate 30 .
[QA-09] Misleading, Outdated, or Incomplete 31 H|gh 1
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can 32
Be Updated With Arbitrary Data H
[QA-11] Redundant Protocol Mapping in sSBTC 33 Medium 4
Contracts

[QA-12] Some sBTC Protocol Setter Functions Lack 34

Corresponding Role I-OW 5
[QA-13] Outdated Emily API Domain Name 35

Generation Schema Documentation for

Non-Production Environments QA 17
[QA-14] Simplification of EmilyStackUtils Operations 36

[QA-15] Cleanup EmilyStack Class 37 .

[QA-16] Typographical Errors in Emily 38 Total Flndlngs 27
[QA-17]1 Use Constants Instead of Magic 39

Numbers in Emily APIs

Security Review

sBTC

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbbwn

17

27

28

29

30
31

32
33
34
35
36
37

38
39

Summary of Findings

Severity Status
Random Deposits Can Be Added .
[H-01] Through Inadequately Validated m ;:srg@l);
Deposit Creation API
sBTC Balance Logic Causes
M-01] External Integration Issues Acknowledged
. Inability to Rotate Signers to Standard
IM-02] Principals with More Than 15 Keys Resolved
sBTC Withdrawal Mechanism Is
[M-03] Susceptible to Griefing Attacks Acknowledged
Random Withdrawals Can Be Added
[M-04] Through Inadequately Validated Acknowledged
Withdrawal Creation API
_ Duplicate Entry in L
[L-01] BUFF.TO_BYTE ow Resolved
_ Inconsistent Handling of Dust L
[L-02] Limit on Deposits and Withdrawals Acknowledged
_ Authorization Mechanism Is Poorly
[L-03] Applied in The sBTC Contract Low Acknowledged
Retry Mechanism Lacks
[L-04] Exponential Backoff Strategy Low Acknowledged
Resolve Outstanding Critical TODOs
[L-05] and Missing Features Low Acknowledged

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

Summary of Findings

Severity Status
_ Incomplete sBTC Logging on QA
[QA-01] Deposit Creation - Acknowledged
[QA-02] | Typographical Errors Resolved
[QA-03] | Remove Unused Constants Resolved
_ Token Symbol Variable Length May A
[QA-04] Constrain Future Symbol Updates Acknowledged
- sBTC Token Name and Symbol Should
[QA-05] Not Be Changeable Acknowledged
_ Simplification Opportunities in sBTC QA
[QA-06] Operations - Acknowledged
_ sBTC Contracts Structure and Style QA
[QA-07] Inconsistencies - Acknowledged
[QA-08] | Use Constants Where Appropriate Acknowledged
_ Misleading, Outdated, or Incomplete QA
[QA-09] Comments in sBTC Contracts - Acknowledged
_ sBTC Protocol Contract Type Can Be QA
[QA=10] | \jpqated With Arbitrary Data Ce) Acknowledged
_ Redundant Protocol Mapping in sBTC QA
[QA-11] Contracts - Acknowledged
Some sBTC Protocol Setter Functions
- A
[QA-12] Lack Corresponding Role Acknowledged
Outdated Emily API Domain Name
[QA-13] | Generation Schema Documentation for Resolved
Non-Production Environments
_ Simplification of EmilyStackUtils
[QA-14] Operations Acknowledged
[QA-15] | Cleanup EmilyStack Class Acknowledged
[QA-16] | Typographical Errors in Emily Resolved
_ Use Constants Instead of Magic
[QA-17] Numbers in Emily APIs Acknowledged

|
CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings

[H-01] Random Deposits Can Be Added Through [H-O1] Random DepOSitS Can Be Added Through
82 MediumEindings oo oo 2 Inadequately Validated Deposit Creation API

8. Findings

8.1. High Findings

-
oom\lmmmmmbhwm

[M-01] sBTC Balance Logic Causes External 12

Integration Issues

[M-02] Inability to Rotate Signers to Standard 14

Principals with More Than 15 Keys * -
[M-03] sBTC Withdrawal Mechanism Is 15 Descrl ptlon

Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through 17
Inadequately Validated Withdrawal Creation API

8.3.Low Findings 18 The Emily API routes, which handle the creation of orders such as deposits

[L-01] Duplicate Entry in BUFF_TO_BYTE 18

[L-02] Inconsistent Handling of Dust Limit on 19 or withdrawals, ultimately write data into the underlying DynamoDB

Deposits and Withdrawals 3 X X .

[TLh-osé%tgorization Mechanism Is Poorly Applied in 20 database. Currently, creating a deposit through the APl is not restricted by
e s ontract

[SLt-ot41 Retry Mechanism Lacks Exponential Backoff 21 any permission system. Without such restrictions, an attacker can
rategy

el Resalve Outstanding Crtical TODOs and 22 intentionally spam the creation of deposit HTTP requests, leading to
issing Features . .])

SAQNEindios _ _ 23 database saturation, increased AWS costs, and potential database issues.

[QA-01] Incomplete sBTC Logging on Deposit 23

Creation

[QA-02] Typographical Errors 24

[QA-03] Remove Unused Qonstants 25 When Creating a deposit via the PposT /deposit -

[QA-04] Token Symbol Variable Length May 26

Constrain Future Symbol Updates handlers: :deposit::create deposit

[QA-05] sBTC Token Name and Symbol Should Not 27 =

Be Changeable

[QA-06] Simplification Opportunities in SBTC 28

Operations i i H H H

[QA-07] SBTC Contracts Structure and Style 29 e There is no requirement for an authorization mechanism or API key.

Inconsistencies i i

[QA-08] Use Constants Where Appropriate 30 ¢ The POST bOdy is a JSON ObJeCt mapped toa

[QA-09] Misleading, Outdated, or Incomplete 31 o

Comments in sSBTC Contracts e O Tl e t\/pe entry'

[QA-10] sBTC Protocol Contract Type Can 32

Be Updated With Arbitrary Data .

[QA-11] Redundant Protocol Mapping in sSBTC 33 pub struct CreateDepositRequestBody {

Contracts /// Bitcoin transaction 1id.

[QA-12] Some sBTC Protocol Setter Functions Lack 34 pub bitcoin_txid: String,

Corresponding Role) /// Output index on the bitcoin transaction associated with this specific

[QA-13] Outdated Emily API Domain Name 35 d it

Generation Schema Documentation for 7/ e;.)os7. C A

Non-Production Environments pub bitcoin_tx_output_index: u32,

[QA-14] Simplification of EmilyStackUtils Operations 36 /// Reclaim script.

[QA-15] Cleanup EmilyStack Class 37 pub reclaim_script: String,

[QA-16] Typographical Errors in Emily 38 /// Deposit script

[QA-17] Use Constants Instead of Magic 39 . S .

Numbers in Emily APls) pub deposit_script: String

e Several validations are missing in the payload body:
o There is no validation on the bitcoin txid to ensure itis a valid
Bitcoin transaction. Any arbitrary string can be passed.
o Thereis no validation on the bitcoin tx output index to confirm it
corresponds to an index that exists in the bitcoin txid |

e While the reclaim script and deposit script must be validly
sbtc: :deposits: :DepositScriptInputs formatted, there is no

enforced correspondence between the Bitcoin transaction and these
SCI’iptS. AsS reclaim script ﬂ deposit_script are NOH-KG){
Attributes, there is no constraint preventing the reuse of the script.

o Datais only validated to ensure it was correctly saved, which is always
true for newly created deposits.

o Finally, the data is directly saved in the database without any further
checks.

Security Review

sBTC

https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/routes/deposit.rs#L54-L64
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/deposit/requests.rs#L37-L46
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L232
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L233
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L280-L300
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L280-L300
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/database/entries/deposit.rs#L128-L153
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/database/entries/deposit.rs#L128-L153
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/cdk/lib/emily-stack.ts#L156-L157
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/deposit/requests.rs#L37-L46
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L232
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L232
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L233

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

An attacker can easily spam the /deposit endpoint with arbitrary inputs,
which do not even need to be valid Bitcoin transaction IDs, as long as the
payload includes a valid reclaim and deposit script. The same script can be
reused for each randomly generated PoOST .

This attack not only increases database costs but can also lead to a denial
of service (DoS) under high load.

Recommendation

Implement permissioning to allow only trusted API key holders to add
deposits and introduce further validations on the Bitcoin transaction itself.
Ensure checks are in place to:

e Verify that bitcoin txid is a valid Bitcoin transaction string.

e Confirm that bitcoin tx output_index is an outputindex that exists
in the specific transaction.

e Ensure reclaim script and deposit_script are actually connected
to the bitcoin txid .

This issue was also identified by the sBTC team and is a work in progress.

1

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

8.2. Medium Findings

[M-01] sBTC Balance Logic Causes
External Integration Issues

Description

Users holding sBTC can withdraw it from Stacks to Bitcoin by
calling the
withdrawal process involves several steps:

sbtc-withdrawal::initiate-withdrawal-request function. The

1. The user initiates the withdrawal, specifying the amount they wish to
withdraw and the maximum fee they are willing to pay (in BTC).

2. The native Stacks core logic attempts to finalize the transaction on
Bitcoin or refunds it on Stacks if it fails or cannot be executed.

After step (1) is completed, the user is recorded in sBTC's internal
accounting as having locked tokens.

(try! (ft-burn? sbtc-token amount owner))

(ft-mint? sbtc-token-locked amount owner)

However, the user’s balance, as perceived by external integrators when
calling the standard SIP-10::get-balance function, does not change:

(define-read-only (get-balance (who principal))
(ok (+ (ft-get-balance sbtc-token who) (ft-get-balance sbtc-token-locked who))
)

Due to this mechanism, between the initiation of a withdrawal and its
finalization or execution, users’ principals appear to have a certain balance
externally. However, attempting to transfer this balance will fail, as the

transfer function only recognizes unlocked sBTC tokens as available for
transfer.

Consider scenarios where:

e A user initiates a withdrawal and then

o Interacts with a third-party protocol that accepts generic sIp-10
tokens, including sBTC , for example, for depositing.

o The protocol deposit would fail at the transfer call due to insufficient
tokens, even if internally indicates the user has enough
tokens. This results in poor UI/UX and can be difficult to debug initially.

get-balance

While there is no token loss, having get-balance implemented in this way
requires protocols wishing to integrate with it to call
balance-available jnstead. This significantly increases integration
friction, as it deviates from standard behavior.

sbtc-token: :get-

There is no benefit for any third-party protocol to know how much sBTC a
user currently has locked.

Another point to consider is that users can create always-reverting
withdrawals by setting the maximum fee to 0. Withdrawals without a fee
will generally be rejected. Although uncommon, there may be potential
situations where this can be exploited.

12

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L26-L27
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L26-L27
https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#balance-of
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L105-L111
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-token.clar#L105-L111

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

Recommendation

Modify get-balance to return the balance of the underlying sbtc-token
Remove the get-balance-available function and add a get-balance-
locked function to show how much users have locked at that moment.

13

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[M-02] Inability to Rotate Signers to
Standard Principals with More Than 15 Keys

Description

When a new signer principal and subsequent data need to be changed, the
function is invoked. This
function allows the current signer principal to be changed to a standard
principal, which can consist of up to 128 public keys.

sbtc-bootstrap-signers: :rotate-keys-wrapper

However, the implementation fails when more than 15 keys are provided
due to an incorrect maximum iterator buffer length in the (concat-pubkeys-
fold function.

;; Concatenate a pubkey buffer with a length prefix.
;3 The max size of the iterator is 4239 bytes, which is (33 * 128) 4224 bytes
;; for the public keys and 15 bytes for the length prefixes.
(define-read-only (concat-pubkeys-fold (pubkey (buff 33)) (iterator (buff 510)))
(let
(
(pubkey-with-len (concat (bytes-len pubkey) pubkey))
(next (concat qiterator pubkey-with-len))
)
(unwrap-panic (as-max-len? next u510))
)
)

The maximum iterator size can reach 4352 bytes, calculated as: 33
(pubkey length) * 128 (maximum number of keys) + 128 (one byte length
prefix for each address). However, the code currently uses the value 510,
which restricts the algorithm to 510/(33 key size + 1 byte length prefix)

= 15 keys.

This limitation significantly impacts the functionality of the API. If, in the
future, the community requires more than 15 signers, it will not be possible.

Recommendation

Adjust the iterator buffer length from 510 to 4352, and update the
as-max-len? max_length parameter to u4352 .

Note: The comments within the function are also incorrect, but these are
addressed in another issue.

Issue was also identified by the sBTC developers and resolved before
deployment.

14

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks

Description

Users holding sBTC can withdraw it from Stacks to Bitcoin by calling the
sbtc-withdrawal::initiate-withdrawal-request function. The withdrawal

process involves several steps:

e The user initiates the withdrawal, specifying the amount they wish to
withdraw and the maximum fee they are willing to pay (in BTC).

e The native Stacks core logic attempts to finalize the transaction on
Bitcoin or refund it on Stacks if it fails or cannot be executed.

For step (2), the current signer principal must either call
when the withdrawal is correct and executable or
call reject-withdrawal-request to reject the withdrawal. Accepting and
rejecting are necessary to burn or unlock the user’'s pending sBTC .

accept-

withdrawal-request

It is important to note that when users initiate a withdrawal, they must
specify the maximum fee they are willing to pay for the transaction to be
executed on the Bitcoin network.

This mechanism is susceptible to griefing because a malicious attacker can
continuously initiate withdrawals with a maximum fee set to 0. These
requests will ultimately be rejected, as without a fee, the underlying peg-
out mechanism will eventually lose funds. However, by rejecting the
request, i.e., calling reject-withdrawal-request , the principal signer
incurs an execution fee on Stacks.

The overall execution fee for initiating a withdrawal is comparable to that
of rejecting one. Even if bulk rejection is used via the complete-withdrawal
function, the attacker does not face a significant cost-to-damage ratio
concerning block costs.

| Action | Write Length | Write Count | Read Length | Read Count | Runtime

——————————— |----------- |---------- |-------|| initiate-withdrawal-request
| 216 | 6 | 38,425 | 22| 78,005 | | reject-withdrawal-request |22 |5 |
59,301 31| 104,363 | | complete-withdrawal (average on 300 rejected
requests) | 22 | 5| 45,897 | 28 | 11,607 |

In practice, the effectiveness of the attack, meaning the attacker’s loss
compared to the signer’s loss (or cost-to-damage ratio), depends on the
aforementioned block costs coupled with dynamic execution fees, which
are network-determined.

Regardless of the cost to the attacker, allowing this situation to persist will
result in rejected transactions, even if caused by the mistake of organic
users, which only the protocol signer can execute.

15

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

Recommendation

Implement a minimum max fee value for initiating withdrawal requests.
Initially, it can be set to 0 and only increased if the indicated attack is
observed in the wild (ITW).

16

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[M-04] Random Withdrawals Can Be Added
Through Inadequately Validated Withdrawal
Creation API

Description

The Emily APl includes routes for creating orders, such as deposits or
withdrawals, which ultimately write data to the underlying DynamoDB
database.

Currently, creating a withdrawal through the API is not restricted by an
APl key or any permission system. Without such restrictions, an attacker
can intentionally spam the API with HTTP requests, leading to database
saturation, increased AWS costs, and potential loss of funds.

When a withdrawal entry is created via the POST /withdrawal -

handlers::withdrawal: :create withdrawal

e There is no requirement for an authorization mechanism or API key.

e The PosT body is a JSON object mapped to a
CreateWithdrawalRequestBody tMQe entry_

o All data to be saved in the database is directly taken from the request

body.
e The data is validated only to ensure no corruption with previously

saved data, a check that always passes for new entries.
o Finally, the data is directly saved into the database withdrawal table.

An attacker can exploit the /withdrawal endpoint with arbitrary inputs
due to the absence of any checks, leading to increased database costs
and potential denial of service (DoS) attacks on the database.

Recommendation

Implement a permission system to ensure that only holders of trusted API
keys can add withdrawals. Additionally, enhance the validation of the
payload itself. Specifically, add checks to the
CreateWithdrawalRequestBody payload:

e stacks block hash must be a valid Stacks block hash.

e stacks_block height must correspond to the indicated
stacks block hash .

e recipient mMmust be a valid Bitcoin address.

17

https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/routes/withdrawal.rs#L41-L51
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/withdrawal/requests.rs#L26-L39
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L147-L178
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L147-L178
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L179-L180
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L179-L180
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/withdrawal.rs#L181-L182
https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/models/withdrawal/requests.rs#L26-L39

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

8.3. Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE

Description

When a new signer principal is added and subsequent data changes are
required, the sbtc-bootstrap-signers::rotate-keys-wrapper function is
invoked. Within this function, pubkeys-to-principal s called to generate
the corresponding Stacks standard principal derived from the provided
public keys.

During the execution of pubkeys-to-principal , the uint-to-byte function
is used twice to convert unsigned integers to bytes. This function relies on
a byte array, BUFF_TO_BYTE , which is incorrectly implemented.
Specifically, BUFF_TO BYTE returns the same value (©x33) for both the
50th and 51st elements, meaning that converting the integer 50 results in
the byte value 51.

Although the function is incorrectly implemented, there is no direct
impact at present, as there is no call that uses 50 as an input value.

In one instance, within the pubkeys-to-spend-script function, it is always
called with an 80 offset, ensuring that the value 50 is never reached:

(concat (uint-to-byte (+ u80 m)) ;; “m” in m-of-n
(concat (uint-to-byte (+ u80 (len pubkeys))) ;; “n” in m-of-n

In another instance, the bytes-len function is called with a buffer length

of at most 33, again avoiding the value 50.

(define-read-only (bytes-len (bytes (buff 33)))
(unwrap-panic (element-at BUFF_TO BYTE (len bytes)))
)

Recommendation

In the BUFF _TO BYTE

index position.

array, insert the correct value 0x32 at the 50th

18

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L85-L87
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L85-L87
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L131-L133
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L131-L133

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[L-02] Inconsistent Handling of Dust
Limit on Deposits and Withdrawals

Description

To ensure the Bitcoin network accepts a BTC transfer, the minimum
number of satoshis that can be transferred, known as the dust limit,

is verified during each withdrawal and deposit. However, there are
inconsistencies in how this limit is interpreted and in the accompanying
comments.

For deposits

e No comment is provided at the declaration.

« A comment at the check location indicates the amount must be strictly
e greater than the dust limit.

o Despite this, the dust limit is allowed to be met.

(define-constant dust-limit u546)

;; Check that amount is greater than dust limit
(asserts! (>= amount dust-limit) ERR LOWER THAN DUST)

For withdrawals

e« A comment at the declaration suggests the limit should be allowed for
withdrawal.

e No comment is present at the check location.

e The dust limit is not allowed to be met.

;; The minimum amount of sBTC you can withdraw
(define-constant DUST LIMIT u546)

(asserts! (> amount DUST LIMIT) ERR DUST LIMIT)

Due to the current implementation, users can deposit amounts equal to
the dust limit but cannot withdraw them. Consequently, users who deposit
dust-limit amounts will need to deposit additional satoshis to withdraw.

Recommendation

Ensure the dust limit is interpreted consistently in both scenarios.
Additionally, update the comments to reflect this uniform interpretation.

19

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[L-03] Authorization Mechanism Is
Poorly Applied in The sBTC Contract

Description

The new authorization schema of the sBTC is implemented using an
map to associate protocol roles with contract
map to associate, in reverse,

active-protocol-contracts
principals, and an active-protocol-roles
the contract principal with the active role.

This new implementation is correctly utilized in the sbtc-registry
contract to ensure that each specific contract can only perform its
intended operations.

However, in the sbtc-token contract, all protocol-* functions are
checked in such a way that any authorized contract type can perform any
action as long as it is recognized as itself.

For instance, consider the
invoked when locking sBTC before a withdrawal:

sbtc-token: :protocol-lock function, which is

(define-public (protocol-lock (amount uint) (owner principal) (contract-flag
(buff 1)))
(begin
(try!
(contract-call? .sbtc-registry is-protocol-caller contract-flag contract-caller)
(try! (ft-burn? sbtc-token amount owner))

(ft-mint? sbtc-token-locked amount owner)

The sbtc-registry::is-protocol-caller function is called with the data
provided by the contract. This implies that any future deposit contract can
implement and call this function, as long as it passes its role (depositor).

This completely undermines the purpose of such a mechanism, as some
functions should not be arbitrarily called by any approved contract.

Recommendation

Implement specific role-checking functions in sbtc-registry | such as
is-protocol-withdrawer gnd is-protocol-depositor , and apply them

accordingly to each protocol-* function in the sbtc-token contract.

20

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[L-04] Retry Mechanism Lacks Exponential
Backoff Strategy

Description

The Emily APl has implemented a retry mechanism for handling database
update failures in several scenarios:

e When adding a chainstate (posT /chainstate), the execution flow
reaches
e When updating deposits (puT /deposit), the flow reaches

accessors::add chainstate entry with retry

accessors::pull and update deposit with retry
e When updating withdrawals (puT /withdrawal), it reaches

accessors::pull and update withdrawal with retry .

In each of these instances, the retry mechanism does not incorporate a
backoff period between retries, resulting in immediate retry attempts
within a loop:

for _ in 0..retries

This approach can lead to high CPU usage and potential throttling of the
database service, and in extreme cases, it may even cause database
failures.

Recommendation

Implement an exponential backoff retry mechanism with jitter.

21

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[L-05] Resolve Outstanding Critical
TODOs and Missing Features

Description

Throughout the Emily codebase, there are 34 different TODOs. These
TODOs highlight a range of issues, from missing unit tests:

| /// TODO(393): Add handler unit tests.

to critical issues that need resolution before deployment:

/// TODO
//(TBD): This is the only value that will work at the moment because the API needs to
/// TODO(TBD): Get the amount from some script related data somehow.

There is essential functionality that currently does not work, such as
obtaining the deposit APl amount, which is noted with a TODO and must
be addressed before deployment. See the relevant code here.

Recommendation

Resolve the TODOs before deployment. If resolving all is not feasible, at
least address the known critical issues, as the project cannot be deployed
otherwise.

22

https://github.com/stacks-network/sbtc/blob/e4c6b5f89b7b3dec4c1fd4052b48daec202c9fb6/emily/handler/src/api/handlers/deposit.rs#L294-L295

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

8.4. QA Findings

[QA-01] Incomplete sBTC Logging on
Deposit Creation

Description

In the sbtc-registry contract,a print command is included in each
public function to ensure proper event emissions. In nearly all cases, all
arguments are printed. However, the complete-deposit function is an
exception, as the recipient principal is not emitted.

The absence of this parameter increases the difficulty for off-chain
systems to monitor sBTC transactions.

Recommendation

Include the recipient inthe print command within the sbtc-
registry: :complete-deposit function.

23

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-02] Typographical Errors

Description

There are several typographical errors and opportunities for slight wording
improvements throughout the codebase within scope:

e sbtc-registry#1.25 :The word withdrawaled should be corrected to
withdrawn .

e holdings.clar#1119 : Although unexistent is a valid term,itis
less commonly used. Replacing it with nonexistent would be more
appropriate.

Recommendation
Make all the suggested changes.

24

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-03] Remove Unused Constants

Description

Within the codebases under review, there are several
instances of unused constants:

e In sbtc-registry : ERR INVALID REQUEST ID and
ERR MULTI SIG REPLAY

¢ In sbtc-token : ERR NOT AUTH

e In sbtc-withdrawal : MAX ADDRESS VERSION BUFF 32

Recommendation

Remove these constants to enhance code readability, reduce clutter, and
slightly decrease runtime read counts and costs. Additionally, after their
removal, rebase the error codes to eliminate any gaps.

25

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-04] Token Symbol Variable Length
May Constrain Future Symbol Updates

Description

The sbtc-token contract currently defines token-symbol as
(string-ascii 10) and includes functionality to update it using
protocol-set-symbol

However, SIP-10 specifies that token symbols should be of type

(string-ascii 32) . Although the current symbol fits within the
10-character limit, this restriction could hinder future updates to longer
symbols that would be valid under SIP-10.

Recommendation

Modify the token-symbol variable type to (string-ascii 32) to align
with SIP-10 specifications and provide maximum flexibility for future
symbol updates.

26

https://github.com/stacksgov/sips/blob/main/sips/sip-010/sip-010-fungible-token-standard.md#symbol

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-05] sBTC Token Name and Symbol
Should Not Be Changeable

Description

The sBTc token contract currently allows for the modification of the
token’s name and symbol.

The name and symbol, along with the contract address, should remain
immutable. Changing these elements can lead to user confusion for any
external integrators or price aggregators that rely on them in their user
interfaces.

While SIP-10 does not explicitly address this, it is generally understood
that once a fungible token is launched, its name and symbol should remain
unchanged.

Recommendation

Remove the protocol-set-name and protocol-set-symbol functions
from the sbtc-token contract. Additionally, convert the variables storing
this data into constants to ensure they remain unchangeable.

27

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-06] Simplification Opportunities in
sBTC Operations

Description

Within the sBTC contracts, there are several opportunities for
implification that can enhance code readability, reduce code size, and
potentially lower runtime execution costs.

In sbtc-withdrawal

can be

(is-eq requested-max-fee fee)

e L177 :The check
simplified to a direct comparison
e L1254 : The variable

(is-eq (- requested-max-fee fee) u0)

is unused, and is
redundantly called again.
instead of

current-request-id
(get request-id withdrawal)
e Use sbtc-registry::get-current-signer-principal

get-current-signer-data in the functions accept-withdrawal-request

reject-withdrawal-request , anNd complete-withdrawals

In sbtc-deposit :

e Use sbtc-registry::get-current-signer-principal instead of

get-current-signer-data in complete-deposit-wrapper

The entire ERR_<ACTION>_ INDEX_ PREFIX error system can be simplified
wherever it appears:

e Inallinstances, the error code calculation, such as for withdrawals:
(err (+ ERR WITHDRAWAL INDEX PREFIX (+ ul® index))) , can be
rewritten using a single + operation: (err (+ ERR WITHDRAWAL INDEX
index))
e The constants ERR KEY SIZE PREFIX
and ERR WITHDRAWAL, INDEX PREFIX are declared with the direct
attribution of an error value immediately next to them.

ERR _DEPOSIT INDEX PREFIX

Exanwﬂefor sbtc-bootstrap-signers :

(define-constant ERR_KEY_SIZE_PREFIX (unwrap-err! ERR_KEY_SIZE (err true)))
(define-constant ERR_KEY_SIZE (err u200))

In each case, the paired error code is never used, and when using the

ERR <ACTION> INDEX PREFIX value, an extra offset of 10 is added. Instead
of the elaborate schema, directly hardcode the calculated value with the
added index, avoiding an extra addition during a failed bulk iteration call.

(define-constant ERR_KEY_SIZE_PREFIX u210)
;5 ... code ...
(err (+ ERR_KEY_SIZE_PREFIX qindex))

Recommendation

Implement the suggested changes.

28

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L265
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L177
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L254
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L154
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L193
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L228
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-deposit.clar#L40

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbbwn

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-07] sBTC Contracts Structure and
Style Inconsistencies

Description

The Clarity contracts that make up sBTC generally follow a consistent
structure and coding style, except for sbtc-token , which is intentionally
written in a simpler manner. However, there are minor differences and
inconsistencies among the contracts:

1. sbtc-bootstrap-signers gngd sbtc-deposit yse lowercase
constants, while sbtc-withdrawal uses uppercase constants.

2. The contracts slightly deviate from a common contract layout.
Specifically:

. sbtc-bootstrap-signers uses errors as a header,

whereas sbtc-deposit USeS error codes , and sbtc-registry

Uses Error codes

e Headersin sbtc-registry start with uppercase letters

and differ by using Maps (as opposed to data maps) and
variables (as opposed to vars).

. sbtc-withdrawal does not adhere to any pattern followed by

the other contracts.

.

3. | sbtc-bootstrap-signers jncludes ;i placeholders in empty sections
(in data vars and data maps), while while the other contracts do
not use placeholders.

4., sbtc-bootstrap-signers has a 3 newline gap between functions,
instead of just 1 newline. In some places, sbtc-registry has 2
newline gaps between headers, instead of one ([1] and [2]).

5. The sbtc-token contract uses tabs for indentation, while the other

contracts use spaces.

Enhancing code uniformity and, in some cases, reducing contract size can
be achieved by addressing these differences.

Recommendation

1. Standardize the use of uppercase for constants.

2. Adopt a uniform contract layout for all contracts. The layout of sbtc-
registry appears to be more appropriate.

3. Removethe ;; placeholder strings.
Ensure there is only one newline between code elements.

5. Use tabs for indentation in all contracts instead of spaces. This change
would also reduce code size and implicitly lower runtime costs.

29

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L21-L24
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L128-L130
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L21-L24
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L17-L18
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L140-L141

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-08] Use Constants Where
Appropriate

Description

To enhance code readability, it is recommended to use meaningful
constants where applicable. Below are instances within the current
codebases where constants can be utilized, along with suggestions:

e |In sbtc-bootstrap-signers
o AtL88, replace 0xae and the CHECKMULTISIG comment with the
constant OP CHECKMULTISIG
o Replace all instances of u80 with op_N BASE or OP_N .

o At L106, replace ox14 with ADDRESS VERSION MAINNET MULTISIG
and 0x15 with ADDRESS VERSION TESTNET MULTISIG

Recommendation

Implement the suggested changes.

30

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L88
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L106

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-09] Misleading, Outdated, or
Incomplete Comments in sBTC Contracts

Description
The codebase contains comments that are either misleading or outdated.
Instances:

e sbtc-deposit.clar#L79 : The comment (up to 1000) should be

updated (up to 650) because the complete-deposits-wrapper is
limited to 650 elements.

° sbtc-bootstrap-signers.clar#L116-L118 : The comment regarding the
iterator’'s maximum size is incorrect. The total maximum size is 4352,
calculated as 33 (public key length) * 128 (maximum number of keys)
+128 (one-byte length prefix for each address).

. sbtc-withdrawal.clar#L.209 : The comment ;; Call into registry to

confirm accepted withdrawal should be changed to to reject
withdrawal as itis used in the context of rejection.
e sbtc-registry.clar#L115 @ The function description states returns

the current signer set as a list of principals , butthe outputis
a tuple with data, not a list of principals. It should be updated to reflect
the complete data it returns.

. sbtc-registry.clar#L.97 : The function documentation incorrectly
mentions returning the fields of withdrawal-sweeps instead of the
correct completed-withdrawal-sweep .

. sbtc-registry.clar#L108-L109 : The get-deposit-status function
documentation is incorrectly copied from the =get-completed-deposit
function.

. sbtc-registry.clar#1.249 :The complete-deposit function

documentation incorrectly states store a new insert request . It
should be corrected to indicate that the function stores a finalized
deposit request.

Recommendation

Address the mentioned instances as recommended above.

31

https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-deposit.clar#L79
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-bootstrap-signers.clar#L116-L118
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-withdrawal.clar#L209
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L115
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L97
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L108-L109
https://github.com/stacks-network/sbtc/blob/53cc756c0ddecff7518534a69bef59fadb5ab1d4/contracts/contracts/sbtc-registry.clar#L249

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data

Description

The sbtc-registry contract maintains two mappings: one for
authorized principals to authorization types (active-protocol-roles)

and another in reverse (active-protocol-contracts).

There are only three valid protocol contract types:

;5 Protocol contract type
(define-constant governance-role 0x00)
(define-constant deposit-role 0x01)
(define-constant withdrawal-role 0x02)

The protocol type can be updated via the
protocol-contract function. However, this function lacks validation for
new values being added. Similarly, the sbtc-bootstrap-signers::update-
protocol-contract-wrapper function, which invokes the registry update

function, also does not perform any validation.

sbtc-registry: :update-

As aresult, an incorrect contract type might mistakenly be passed and
accepted as valid by the current implementation. Such instances should
trigger a reversion to alert callers, rather than being accepted without
validation. Due to the peculiar manner in which protocol contract
validations are conducted, there are no other side effects.

Recommendation

Ensure that any new contract type passed to either

registry: :update-protocol-contract qr

sbtc-
sbtc-bootstrap-signers:
:update-protocol-contract-wrapper IS Validated to be one of the

existing, supported values.

32

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-11] Redundant Protocol Mapping in
sBTC Contracts

Description

The new authorization schema for the sBTC contracts includes
unnecessary operations.

The implementation uses the active-protocol-contracts map to link
protocol roles to contract principals and the active-protocol-roles
map to do the reverse, associating contract principals with active roles.

The active-protocol-roles

map is utilized solely in the is-protocol

-caller function, where it is checked alongside active-protocol-contracts :

;5 Verify that the contract-caller is a protocol contract
(asserts! (is-eq (some contract)
(map-get? active-protocol-contracts contract-flag)) ERR_UNAUTHORIZED)
;5 Verify that the flag matches the contract-caller
(asserts! (is-eq (some contract-flag)
(map-get? active-protocol-roles contract)) ERR_UNAUTHORIZED)

Since the principal-to-role association updates both active-protocol-
contracts and active-protocol-roles Simultaneouslyin sbtc-
registry: :update-protocol-contract , there will never be a situation

where a principal-to-role is correctly set in one map but incorrectly in the

other.

Recommendation

The active-protocol-roles

lower execution costs.

map is redundant and should be removed to

33

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-12] Some sBTC Protocol Setter
Functions Lack Corresponding Role

Description

The new sBTC authorization mechanism mandates that only one contract
can hold any given role at a time. Currently, there are only three roles
defined:

;3 Protocol contract type
(define-constant governance-role 0x00)
(define-constant deposit-role 0x01)
(define-constant withdrawal-role 0x02)

Upon mapping all protocol functions to their respective calls, it becomes
evident that the sbtc-token
-set-symbol

functions protocol-set-name protocol

1

and protocol-mint-many lack associated roles that can
execute them. Meanwhile, the three existing roles are already assigned:

(map-set active-protocol-contracts governance-role .sbtc-bootstrap-signers)
(map-set active-protocol-contracts deposit-role .sbtc-deposit)
(map-set active-protocol-contracts withdrawal-role .sbtc-withdrawal)

As a result, if the sBTC team and governance decide to modify any
metadata on the sBTC contract (although changing the name and symbol
is not recommended and is discussed in another issue), they must call

sbtc-bootstrap-signers: :update-protocol-contract-wrapper With an
arbitrary role that does not conflict with the existing roles (0x00 - 0x02).
This role must be assigned to a different principal than any of the current
three contracts (e.g., assigning it to current-signer-principal itself)
before calling the sbtc-token functions.

The absence of designated roles for these functions necessitates a
workaround of the existing authorization mechanism by the development
team.

Recommendation

Establish a metadata role to manage the protocol-set-name and
protocol-set-symbol functions, and a minter role to handle the
functions. If multiple
contracts per role are needed, consider removing the current limitation of
the authorization mechanism that restricts each role to a single principal.

protocol-mint-many and protocol-mint

34

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-13] Outdated Emily API Domain
Name Generation Schema
Documentation for Non-Production
Environments

Description

In the Emily TypeScript CDK deployment scripts, when configuring the
APls via the emily-stack::createOrUpdateSpecificApi functions, an

Amazon Route 53 DNS is used to set up specific domains for the APIs.

The custom domain varies depending on whether the deployment stage is
production or not, as indicated in the comments:

// Create the custom domain name of the format:
// if stage != prod: [stage].[purpose].[customRootDomainNameRoot]

// if stage == prod: [purpose].[customRootDomainNameRoot]

However, the actual implementation incorrectly swaps the stage with
purpose placeholders for non-production environments:

const

customDomainName = ‘${purposePrefix}${stagePrefix}${customRootDomainNameRoot}" ;

This results in the domain ending as
, Which is actually the intended design due
to a DNS limitation explained in PR#1112.

[purpose].[stage].

[customRootDomainNameRoot]

Recommendation

In the emily-stack::createOrUpdatespecificApi function, update the
custom domain format comments to reflect the current design accurately.

35

https://github.com/stacks-network/sbtc/pull/1112

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-14] Simplification of EmilyStackUTtils
Operations

Description

The emily-stack-utils::EmilyStackUtils class offers utility methods
for the Cloud Formation Stack. There are two functions with redundant

operations that can be streamlined:

e The isbevelopmentstack function, in the worst-case scenario, calls
the (non-cached)
e Inthe getLambdaGitIdentifier function, the branch throw new

getsStageName function four times.

Error(‘Failed to get the git identifier for the lambda.’);
is not reachable.

By simplifying or removing redundant code, the codebase becomes easier
to maintain.

Recommendation

Revise the = isDevelopmentStack function to make a single call to
isDevelopmentStack .An example implementation is as follows:

public static isDevelopmentStack(): boolean {
return [
Constants.DEV_STAGE_NAME,
Constants.LOCAL_STAGE_NAME,
Constants.UNIT_TEST_STAGE_NAME,
Constants.TEMP_STAGE_NAME

J.includes(this.getStageName());

In the getLambdaGitIdentifier function, remove the second check for
this.lambdaGitIdentifier being equal to | undefined

36

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

17

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-15] Cleanup EmilyStack Class

Description

The emily-stack::EmilyStack class has several areas that
would benefit from a code cleanup:

1. Remove Unused Imports

import * as logs from “aws-cdk-lib/aws-logs”;
import * as cr from “aws-cdk-1lib/custom-resources”;

2. Theresult of calling createorupdateapi is stored in the emilyapis
constant, which is never used. The function can be called without
saving the return value.

3. The JSDoc e@param tags for the createorUpdateDepositTable
function indicate tableIld and tableName parameters, while the
actual parameters are depositTableId and depositTableName
Ensure the JSDoc matches the actual implementation.

4. DynamoDB automatically projects the primary key attributes of the
base table into all Global Secondary Indexes (GSls) and Local
Secondary Indexes (LSIs). Therefore, adding them again in the

nonKeyAttributes Of the secondary index is redundant.

For example, adding BitcoinTxid (partition key) and
BitcoinTxOutputIndex (sort key) to the secondary index nonkeyAttributes
is unnecessary. For the withdrawals and deposits tables, remove the
primary key attributes from the secondary index nonkeyAttributes field.

If duplicating the fields is intentional, add a comment to indicate that they

are redundantly added so that no developer incorrectly assumes their

indexing is optional or dependent on their presence in the
nonKeyAttributes entry.

Recommendation

Implement the suggested code alterations.

37

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Projection.html

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in sSBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-16] Typographical Errors in Emily

Description

The Emily API codebase contains several typographical errors:

¢ |n emily-stack-utils
° apiJsonDefiniton Should be corrected t0 apigsonbDefinition
°o exercize Should be corrected t0 exercise

e In handler\src\api\handlers\internal.rs
o occured should be corrected to occurred
o intendeded should be corrected to intended

¢ In handler\src\api\models\common\mod.rs and
handler\src\database\entries\mod.rs
o transaciton should be corrected to transaction
o articacts should be corrected to artifacts
o fulill should be corrected to fulfill

e |n handler\src\api\models\deposit\requests.rs and
handler\src\api\models\withdrawal\requests.rs

o singlular should be corrected to singular

e |n handler\src\api\routes\mod.rs

o definitiions should be corrected to definitions

¢ |n handler\src\common\error.rs

o The Reorganzing error should be renamed to Reorganizing

e |n handler\src\database\entries\deposit.rs and

handler\src\database\entries\withdrawal.rs
o chronoloical should be corrected to chronological
o chainsates should be corrected to chainstates

. handler\src\database\entries\deposit.rs

o depoit should be corrected to deposit

¢ |n handler\src\database\entries\mod.rs

o Parition should be corrected to Partition
o serialied should be corrected to serialized

¢ |n handler\src\database\accessors.rs

o exhasutive should be corrected to exhaustive
o sigular should be corrected to singular
o parition key should be corrected to partition key

Recommendation

Correct all identified typographical errors.

38

CONTENTS

1. About Clarity Alliance
2. Disclaimer
3. Introduction
4. About sBTC
5. Risk Classification
5.1.Impact
5.2. Likelihood
5.3. Action required for severity levels
6. Security Assessment Summary
7.Executive Summary
8. Summary of Findings
8.1.High Findings
[H-01] Random Deposits Can Be Added Through
Inadequately Validated Deposit Creation API
8.2. Medium Findings
[M-01] sBTC Balance Logic Causes External
Integration Issues
[M-02] Inability to Rotate Signers to Standard
Principals with More Than 15 Keys
[M-03] sBTC Withdrawal Mechanism Is
Susceptible to Griefing Attacks
[M-04] Random Withdrawals Can Be Added Through
Inadequately Validated Withdrawal Creation API
8.3.Low Findings
[L-01] Duplicate Entry in BUFF_TO_BYTE
[L-02] Inconsistent Handling of Dust Limit on
Deposits and Withdrawals
[L-03] Authorization Mechanism Is Poorly Applied in
The sBTC Contract
[L-04] Retry Mechanism Lacks Exponential Backoff
Strategy
[L-05] Resolve Outstanding Critical TODOs and
Missing Features
8.4. QA Findings
[QA-01] Incomplete sBTC Logging on Deposit
Creation
[QA-02] Typographical Errors
[QA-03] Remove Unused Constants
[QA-04] Token Symbol Variable Length May
Constrain Future Symbol Updates
[QA-05] sBTC Token Name and Symbol Should Not
Be Changeable
[QA-06] Simplification Opportunities in SBTC
Operations
[QA-07] sBTC Contracts Structure and Style
Inconsistencies
[QA-08] Use Constants Where Appropriate
[QA-09] Misleading, Outdated, or Incomplete
Comments in sSBTC Contracts
[QA-10] sBTC Protocol Contract Type Can
Be Updated With Arbitrary Data
[QA-11] Redundant Protocol Mapping in SBTC
Contracts
[QA-12] Some sBTC Protocol Setter Functions Lack
Corresponding Role
[QA-13] Outdated Emily API Domain Name
Generation Schema Documentation for
Non-Production Environments
[QA-14] Simplification of EmilyStackUtils Operations
[QA-15] Cleanup EmilyStack Class
[QA-16] Typographical Errors in Emily
[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Security Review

sBTC

-
oom\lmmmmmbhwm

27

28

29

30
31

32
33
34
35
36
37

38
39

[QA-17] Use Constants Instead of Magic
Numbers in Emily APIs

Description

In the Emily TypeScript CDK deployment scripts, several key values are

directly hardcoded into the code instead of being moved to the existing

Constants class.

e In emily-stack.ts#L309-1L310 , the lambda timeout of 5 seconds
should be moved to a constant.

e In emily-stack.ts#L413-1415 , the request limits (rate and burst)
should be moved into separate constants.

e |In chainstate.rs#L189 , deposit.rs#L363 , and withdrawal.rs#L253 ,
the retry count for database updates is hardcoded as 15 and should be
set as a constant.

Generally, using constants instead of hardcoding values improves code
readability and simplifies maintenance when configuration changes are
needed.

Recommendation

Implement constants in the specified instances.

39

