

Security Audit Report
Stacks - Signer​

April 2025

V202411

https://www.coinfabrik.com

 Security Audit Report: Signer - Stacks

Executive Summary​ 3
Scope​ 3
Findings​ 3

Critical Severity Issues​ 4
High Severity Issues​ 4

HI-01 Replay Attack on Vote​ 4
Medium Severity Issues​ 6

ME-01 Incorrect Block Rejection State Management​ 6
Low Severity Issues​ 7

LO-01 Memory Leak Of Stale Signers​ 7
LO-02 Insecure Default Contract Creation​ 8
LO-03 Incorrect Reward Cycle In Calculation​ 9
LO-04 Insecure transmission of authentication credentials​ 10
LO-05 Stale configuration Handling Of Reward Cycle​ 11

Enhancements​ 12
EN-01 Exception Masking​ 12

About CoinFabrik​ 12
Methodology​ 13
Severity Classification​ 14
Issue Status​ 15
Disclaimer​ 15
Changelog​ 16

Page 2 of 16

 Security Audit Report: Signer - Stacks

Executive Summary

CoinFabrik was asked to audit the Stacks Signer component for the Stacks project.

During this audit we found one high severity issue, one medium severity issue and five

low severity issues. Also, one enhancement was proposed.

All the issues were resolved or acknowledged.

Scope

The audited files are from the git repository located at

https://github.com/stacks-network/stacks-core.git. The audit is based on the commit

c1a1f50fddcbc11054fae537103423e21221665a.

The scope for this audit includes and is limited to the following files:

●​ src/chainstate.rs: Stacks sortition state and definitions

●​ src/cli.rs: CLI subcommand implementation

●​ src/config.rs: Config file manager

●​ src/lib.rs: CLI definitions

●​ src/main.rs: CLI top-level code

●​ src/monitor_signers.rs: Observe and report signer behavior

●​ src/runloop.rs: Top-level runloop, containing main signer logic

●​ src/signerdb.rs: Maintain state of the signer

●​ src/client: StackerDB client

●​ src/monitoring: Monitoring endpoint implementation

●​ src/v0: Signer implementation

No other files in this repository were audited. Its dependencies are assumed to work according

to their documentation. Also, no tests were reviewed for this audit.

Findings

In the following table we summarize the security issues we found in this audit. The severity

classification criteria and the status meaning are explained below. This table does not include

Page 3 of 16

https://github.com/stacks-network/stacks-core.git

 Security Audit Report: Signer - Stacks

the enhancements we suggest to implement, which are described in a specific section after the

security issues.

Each severity label is detailed in the Severity Classification section. Additionally, the statuses are

explained in the Issues Status section.

Id Title Severity Status

HI-01 Replay Attack on Vote ❚ High Acknowledged

ME-01 Incorrect Block Rejection State Management ❚ Medium Acknowledged

LO-01 Memory Leak Of Stale Signers ❚ Low Resolved

LO-02 Insecure Default Contract Creation ❚ Low Resolved

LO-03 Incorrect Reward Cycle In Calculation ❚ Low Acknowledged

LO-04
Insecure transmission of authentication
credentials

❚ Low Acknowledged

LO-05
Stale configuration Handling Of Reward
Cycle

❚ Low Acknowledged

Critical Severity Issues

No issues found.

High Severity Issues

HI-01 Replay Attack on Vote

Location
●​ ./src/cli.rs: 182

Classification
●​ CWE-294: Authentication Bypass by Capture-replay 1

1 https://cwe.mitre.org/data/definitions/294.html

Page 4 of 16

https://cwe.mitre.org/data/definitions/294.html

 Security Audit Report: Signer - Stacks

Description

The VoteInfo::digest method constructs a message hash without including a nonce/timestamp.

This allows signatures to be replayed across voting periods. Attackers can capture a valid signature

and resubmit it indefinitely.

We can see in this code:

 fn digest(&self) -> Sha256Sum {​

 let vote_message = TupleData::from_data(vec![​

 ("sip".into(), Value::UInt(self.sip.into())),​

 ("vote".into(), Value::UInt(self.vote.to_u8().into())),​

])​

 .unwrap();​

 let data_domain =​

 make_structured_data_domain("signer-sip-voting", "1.0.0", CHAIN_ID_MAINNET);​

 structured_data_message_hash(vote_message.into(), data_domain)

The absence of a nonce (a unique random value used once) or a timestamp (indicating when the

signature was created) means that the same signature can be reused multiple times.

Additionally, because SIP proposals are small consecutive numbers, a malicious operator can

pre-generate most possible votes in advance, by signing “yes” and “no” votes, and then storing them

for later use.

Recommendation

Incorporate a nonce and a timestamp in the signature generation process, to ensure that each

signature is unique and cannot be reused. Also, a mechanism to expire those signatures must be

implemented in the verification process too.

Status

Acknowledged. Voters can only cast their vote once, and because the count is manual, any

attack can be detected. But in future versions, the recommendation to incorporate a nonce was

accepted.

Page 5 of 16

 Security Audit Report: Signer - Stacks

Medium Severity Issues

ME-01 Incorrect Block Rejection State Management

Location
●​ ./src/v0/signers.rs: 938

Classification
●​ CWE-770: Allocation of Resources Without Limits or Throttling 2

Description

The check_submitted_block_proposal() function broadcasts block rejections even when marking

the block as locally rejected fails, risking inconsistent node states.

We can see that problem in this code:

 let rejection =​
 self.create_block_rejection(RejectCode::ConnectivityIssues, &block_info.block);​
 if let Err(e) = block_info.mark_locally_rejected() {​
 if !block_info.has_reached_consensus() {​
 warn!("{self}: Failed to mark block as locally rejected: {e:?}");​
 }​
 };​
 debug!("{self}: Broadcasting a block response to stacks node: {rejection:?}");​
 let res = self.stackerdb​
 .send_message_with_retry::<SignerMessage>(rejection.into());

​

When a block validation response is not received within the configured timeout

(block_proposal_validation_timeout), the function attempts to mark the block as locally

rejected via block_info.mark_locally_rejected(). If this operation fails (e.g., due to database

errors or race conditions), the function logs a warning but proceeds to broadcast a rejection message

to the network (self.stackerdb.send_message_with_retry).

Recommendation

If mark_locally_rejected() fails, abort the rejection broadcast to maintain consistency.

Status

Acknowledged. According to the developers, this is the intended behavior.

2 https://cwe.mitre.org/data/definitions/770.html

Page 6 of 16

https://cwe.mitre.org/data/definitions/770.html

 Security Audit Report: Signer - Stacks

Low Severity Issues

LO-01 Memory Leak Of Stale Signers

Location
●​ ./src/runloop.rs: 451

Classification
●​ CWE-401: Missing Release of Memory after Effective Lifetime 3

Description

The cleanup_stale_signers function fails to release resources associated with non-registered

signers, potentially leading to memory leaks and impacting application performance over time.

We can see that problem in this code:

 for (idx, signer) in &mut self.stacks_signers {​
​ ​ ………​
 if let ConfiguredSigner::RegisteredSigner(signer) = signer {​
 if !signer.has_unprocessed_blocks() {​
 debug!("{signer}: Signer's tenure has completed.");​
 to_delete.push(*idx);​
 }​
 }​
 }

The function iterates through the collection of signers. For each stale signer, it checks if the signer is

a RegisteredSigner and whether it has unprocessed blocks. If a signer is stale and has no

unprocessed blocks, its index is added to a to_delete vector for removal from the stacks_signers

collection.

However, the function does not account for non-registered signers. If a signer is not a

RegisteredSigner, it is ignored entirely, and no cleanup or resource release occurs for that signer.

Recommendation

Modify the cleanup_stale_signers function to include logic for releasing resources associated

with non-registered signers.

3 https://cwe.mitre.org/data/definitions/401.html

Page 7 of 16

https://cwe.mitre.org/data/definitions/401.html

 Security Audit Report: Signer - Stacks

Status

Resolved. Unregistered signers are now correctly released.

LO-02 Insecure Default Contract Creation

Location
●​ ./src/client/stacks_client.rs: 793

Classification
●​ CWE-1188: Initialization of a Resource with an Insecure Default 4

Description

The build_unsigned_contract_call_transaction() function sets post_condition_mode to

Allow by default, disabling critical security checks for state changes.

We can see that problem in this code:

 unsigned_tx.anchor_mode = TransactionAnchorMode::Any;​

 unsigned_tx.post_condition_mode = TransactionPostConditionMode::Allow;​

 unsigned_tx.chain_id = chain_id;​

 Ok(unsigned_tx)

We can see in the code that the post_condition_mode is set to

TransactionPostConditionMode::Allow by default. This default behavior disables essential

security checks that validate state changes after contract execution, leaving transactions vulnerable

to exploitation.

Recommendation

Set the default post_condition_mode to TransactionPostConditionMode::Deny or a more

restrictive mode to enforce security checks unless explicitly overridden..

Status

Resolved. The insecure method was removed as it was currently unused.

4 https://cwe.mitre.org/data/definitions/770.html

Page 8 of 16

https://cwe.mitre.org/data/definitions/770.html

 Security Audit Report: Signer - Stacks

LO-03 Incorrect Reward Cycle In Calculation

Location
●​ ./src/v0/signer.rs: 142

Classification
●​ CWE-682: Incorrect calculation 5

Description

The process_event function incorrectly uses self.reward_cycle instead of

current_reward_cycle, potentially leading to the skipping of valid events due to outdated signer's

cycle information.

We can see that problem in this code:

 let other_signer_parity = (self.reward_cycle + 1) % 2;​

 if event_parity == Some(other_signer_parity) {​

 Return;​

 }

​

In this code, self.reward_cycle is used to determine the other_signer_parity, which is then

compared against the event_parity. If the signer's cycle (self.reward_cycle) is outdated, it may

not accurately reflect the current state of the network, leading to valid events being incorrectly

filtered out. This issue could lead to a denial of service (DoS) for the signer, as it may fail to respond

to valid events.

Recommendation

To mitigate this vulnerability, it is recommended to modify the process_event function to use

current_reward_cycle instead of self.reward_cycle when computing other_signer_parity.

Status

Acknowledged. The parity calculation is always (self.reward_cycle+1)%2 regardless of the

current_reward_cycle. This is the correct behavior and thus the issue does not exist.

5 https://cwe.mitre.org/data/definitions/682.html

Page 9 of 16

https://cwe.mitre.org/data/definitions/682.html

 Security Audit Report: Signer - Stacks

LO-04 Insecure transmission of authentication credentials

Location
●​ ./src/client/stacks_client.rs: 142

Classification
●​ CWE-319: Cleartext Transmission of Sensitive Information 6

Description

When connecting to the stacks node, the auth_password is transmitted in cleartext over HTTP

connections (via Authorization header) due to the insecure protocol choice, exposing node

credentials.

We can see that problem in this code:

 let send_request = || {​
 Self.stacks_node_client​

 .post(self.block_proposal_path())​

 .header("Content-Type", "application/json")​

 .header(AUTHORIZATION, self.auth_password.clone())​

 .json(&block_proposal)​

 .send()​

 .map_err(backoff::Error::transient)​

 };

​

The connection is established using plain HTTP, and this choice of protocol means that any data

sent, including sensitive information like passwords, is transmitted in cleartext.​

While it is stated in the documentation that this utility will run in an isolated, secure environment,

the configuration file does not enforce this, and there is a risk that users will inadvertently send

credentials through the network due to this issue.

Recommendation

Transition all communications to use HTTPS instead of HTTP. This will encrypt the data in transit,

protecting sensitive information such as passwords from being intercepted. Alternatively, you could

provide a default error message and confirmation if the user wants to send credentials through an

unencrypted network instead of using a local interface like localhost.

6 https://cwe.mitre.org/data/definitions/770.html

Page 10 of 16

https://cwe.mitre.org/data/definitions/770.html

 Security Audit Report: Signer - Stacks

Status

Acknowledged. The Client is assumed to run in a trusted network environment and already

include a warning message, however Coinfabrik still recommends printing an additional warning

message when using another network address than localhost.

LO-05 Stale configuration Handling Of Reward Cycle

Location
●​ ./src/runloop.rs: 381

Classification
●​ CWE-400: Uncontrolled Resource Consumption 7

Description

The refresh_runloop() function in the Stacks Signer code reuses outdated reward cycle

parameters, potentially leading to signers operating with stale configuration data after network

upgrades.

The function refresh_runloop() is responsible for updating the reward cycle information, but it

fails to fetch fresh values for reward_cycle_length and prepare_phase_block_length from the

network. Instead, it reuses the existing values from the current reward_cycle_info struct. Any

updates to those values will be ignored by the signer, causing operational failures.

Recommendation

Modify the refresh_runloop() function to always fetch the latest reward_cycle_length and

prepare_phase_block_length from the network before updating the reward_cycle_info. This

ensures that signers operate with the most current configuration.

Status

Acknowledged. Reward_cycle_length/info are hard-coded configuration values in the

blockchain that never change, so they only need to be retrieved once.

7 https://cwe.mitre.org/data/definitions/400.html

Page 11 of 16

https://cwe.mitre.org/data/definitions/400.html

 Security Audit Report: Signer - Stacks

Enhancements

These items do not represent a security risk. They are best practices that we suggest

implementing.

Id Title Status

EN-01 Exception Masking Not implemented

EN-01 Exception Masking

Location
●​ ./src/http.rs: 239

Description

The retry_with_exponential_backoff function maps all errors to RetryTimeout, discarding

critical error context. In this code:

 backoff::retry_notify(backoff_timer, request_fn, notify).map_err(|_| ClientError::RetryTimeout)

​

The map_err function converts permanent errors (e.g., invalid signatures) into a generic timeout,

masking root causes. Callers cannot distinguish transient vs permanent failures, risking incorrect

handling of security-critical errors.

Recommendation

Modify the retry_with_exponential_backoff function to categorize errors more effectively.

Status

Not implemented.

About CoinFabrik
CoinFabrik is a research and development company specialized in Web3, with a strong

background in cybersecurity. Founded in 2014, we have worked on over 500 decentralization

projects, including EVM-based and other platforms like Solana, Algorand, and Polkadot. Beyond

development, we offer security audits through a dedicated in-house team of senior cybersecurity

Page 12 of 16

https://www.coinfabrik.com

 Security Audit Report: Signer - Stacks

professionals, working on code in languages such as Substrate, Solidity, Clarity, Rust, TEAL, and

Stellar Soroban.

Our team has an academic background in computer science, software engineering, and

mathematics, with accomplishments including academic publications, patents turned into

products, and conference presentations. We actively research in collaboration with universities

worldwide, such as Cornell, UCLA, and École Polytechnique in Paris, and maintain an ongoing

collaboration on knowledge transfer and open-source projects with the University of Buenos

Aires, Argentina. Our management and people experience team has extensive expertise in the

field.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the

expected behavior, and general documentation about the project. Our auditors spent two weeks

auditing the source code provided, which includes understanding the context of use, analyzing

the boundaries of the expected behavior of each contract and function, understanding the

implementation by the development team (including dependencies beyond the scope to be

audited) and identifying possible situations in which the code allows the caller to reach a state

that exposes some vulnerability. Without being limited to them, the audit process included the

following analyses.

●​ Arithmetic errors

●​ Race conditions

●​ Misuse of block timestamps

●​ Denial of service attacks

●​ Missing or misused function qualifiers

●​ Needlessly complex code and contract interactions

●​ Poor or nonexistent error handling

●​ Insufficient validation of the input parameters

●​ Incorrect handling of cryptographic signatures

●​ Centralization and upgradeability

Page 13 of 16

 Security Audit Report: Signer - Stacks

Severity Classification
Security risks are classified as follows : 8

8 This classification is based on Immunefi severity classification system version 2.3.
https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

Page 14 of 16

❚ Critical

●​ Manipulation of governance voting result deviating from voted
outcome and resulting in a direct change from intended effect of
original results

●​ Direct theft of any user funds, whether at-rest or in-motion, other than
unclaimed yield

●​ Direct theft of any user NFTs, whether at-rest or in-motion, other than
unclaimed royalties

●​ Permanent freezing of funds

●​ Permanent freezing of NFTs

●​ Unauthorized minting of NFTs

●​ Predictable or manipulable RNG that results in abuse of the principal
or NFT

●​ Unintended alteration of what the NFT represents (e.g. token URI,
payload, artistic content)

●​ Protocol insolvency

❚ High

●​ Theft of unclaimed yield

●​ Theft of unclaimed royalties

●​ Permanent freezing of unclaimed yield

●​ Permanent freezing of unclaimed royalties

●​ Temporary freezing of funds

●​ Temporary freezing NFTs

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

 Security Audit Report: Signer - Stacks

Issue Status
An issue detected by this audit has one of the following statuses:

●​ Unresolved: The issue has not been resolved.

●​ Resolved: Adjusted program implementation to eliminate the risk.

●​ Partially Resolved: Adjusted program implementation to eliminate part of the risk. The

other part remains in the code, but is a result of an intentional decision.

●​ Acknowledged: The issue remains in the code, but is a result of an intentional decision.

The reported risk is accepted by the development team.

●​ Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Disclaimer
This audit report has been conducted on a best-effort basis within a tight deadline defined

by time and budget constraints. We reviewed only the specific code provided by the client at

the time of the audit, detailed in the Scope section. We do not review other components that are

part of the solution: neither implementation, nor general design, nor business ideas that

motivate them.

While we have employed the latest tools, techniques, and methodologies to identify potential

vulnerabilities, this report does not guarantee the absolute security of the contracts, as

undiscovered vulnerabilities may still exist. Our findings and recommendations are

Page 15 of 16

❚ Medium

●​ Smart contract unable to operate due to lack of token funds

●​ Block stuffing

●​ Griefing (e.g. no profit motive for an attacker, but damage to the users
or the protocol)

●​ Theft of gas

●​ Unbounded gas consumption

●​ Security best practices not followed

❚ Low
●​ Contract fails to deliver promised returns, but doesn't lose value

●​ Other security issues with minor impact

 Security Audit Report: Signer - Stacks

suggestions to enhance security and functionality and are not obligations for the client to

implement.

The results of this audit are valid solely for the code and configurations reviewed, and any

modifications made after the audit are outside the scope of our responsibility. CoinFabrik

disclaims all liability for any damages, losses, or legal consequences resulting from the use or

misuse of the applications, including those arising from undiscovered vulnerabilities or changes

made to the codebase after the audit.

This report is intended exclusively for the Stacks team and should not be relied upon by any

third party without the explicit consent of CoinFabrik. Blockchain technology and smart contracts

are inherently experimental and involve significant risk; users and investors should fully

understand these risks before deploying or interacting with the audited contracts.

Changelog

Date Description

10 April 2025 Initial report based on commit c1a1f50fddcbc11054fae537103423e21221665a.

18 April 2025 Fixes committed on a7646f96e4e824e6c42ef0452df728b8618a01b2.

30 April 2025 Final report based on commit a7646f96e4e824e6c42ef0452df728b8618a01b2

Page 16 of 16

	
	Security Audit Report
	
	Executive Summary
	Scope
	Findings
	Critical Severity Issues
	High Severity Issues
	HI-01 Replay Attack on Vote
	Location
	Classification
	Description
	Recommendation
	Status

	Medium Severity Issues
	ME-01 Incorrect Block Rejection State Management
	Location
	Classification
	Description
	Recommendation
	Status

	Low Severity Issues
	LO-01 Memory Leak Of Stale Signers
	Location
	Classification
	Description
	Recommendation
	Status

	LO-02 Insecure Default Contract Creation
	Location
	Classification
	Description
	Recommendation
	Status

	LO-03 Incorrect Reward Cycle In Calculation
	Location
	Classification
	Description
	Recommendation
	Status

	LO-04 Insecure transmission of authentication credentials
	Location
	Classification
	Description
	Recommendation
	Status

	LO-05 Stale configuration Handling Of Reward Cycle
	Location
	Classification
	Description
	Recommendation
	Status

	Enhancements
	EN-01 Exception Masking
	Location
	Description
	Recommendation
	Status

	About CoinFabrik
	Methodology
	Severity Classification
	Issue Status
	Disclaimer
	Changelog

