

Security Audit Report
Stacks - LibSigner​

April 2025

V202411

https://www.coinfabrik.com

 Security Audit Report: LibSigner - Stacks

Executive Summary​ 3
Scope​ 3
Findings​ 3

Critical Severity Issues​ 4
High Severity Issues​ 4

HI-01 Incorrect Event Public Key​ 4
HI-02 Chunk size limit bypass​ 5

Medium Severity Issues​ 6
Low Severity Issues​ 6

LO-01 Trivial Service Shutdown​ 6
Enhancements​ 7

EN-01 CRLF Injection in RPC Request​ 7
About CoinFabrik​ 8
Methodology​ 8
Severity Classification​ 10
Issue Status​ 11
Disclaimer​ 11
Changelog​ 12

Page 2 of 12

 Security Audit Report: LibSigner - Stacks

Executive Summary

CoinFabrik was asked to audit the LibSigner component for the Stacks project.

During this audit we found two high severity issues and one low severity issue. Also, one

enhancement was proposed.

All the issues were resolved or acknowledged.

Scope

The audited files are from the git repository located at

https://github.com/stacks-network/stacks-core.git. The audit is based on the commit

c1a1f50fddcbc11054fae537103423e21221665a.

The scope for this audit includes and is limited to the following files:

●​ src/errors.rs: Error definition

●​ src/events.rs: Handler for signer events

●​ src/http.rs: Decoding of http messages sent to signer server

●​ src/libsigner.rs: Top-level src file of libsigner

●​ src/runloop.rs: Top-level runloop, containing main signer logic

●​ src/session.rs: StackerDB session manager

●​ src/signer_set.rs: Definitions for stacks signer set.

No other files in this repository were audited. Its dependencies are assumed to work according

to their documentation. Also, no tests were reviewed for this audit.

Findings

In the following table we summarize the security issues we found in this audit. The severity

classification criteria and the status meaning are explained below. This table does not include

the enhancements we suggest to implement, which are described in a specific section after the

security issues.

Page 3 of 12

https://github.com/stacks-network/stacks-core.git

 Security Audit Report: LibSigner - Stacks

Each severity label is detailed in the Severity Classification section. Additionally, the statuses are

explained in the Issues Status section.

Id Title Severity Status

HI-01 Incorrect Event Public Key ❚ High Resolved

HI-02 Chunk size limit bypass ❚ High Acknowledged

LO-01 Trivial Service Shutdown ❚ Low Acknowledged

Critical Severity Issues

No issues found.

High Severity Issues

HI-01 Incorrect Event Public Key

Location
●​ ./src/event.rs:[430]

Classification
●​ CWE-684: Incorrect Provision of Specified Functionality 1

Description

The TryFrom implementation for StackerDBChunksEvent to SignerEvent overwrites the variable

miner_pk with each valid chunk's PK.

We can see that in the for loop:

 let mut miner_pk = None;​
 for chunk in event.modified_slots {​
 let Ok(msg) = T::consensus_deserialize(&mut chunk.data.as_slice()) else {​
 Continue;​
 };

 miner_pk = Some(chunk.recover_pk().map_err(|e| {​
 EventError::MalformedRequest(format!(​
 "Failed to recover PK from StackerDB chunk: {e}"​
))​
 })?);​

1https://cwe.mitre.org/data/definitions/684.html

Page 4 of 12

 Security Audit Report: LibSigner - Stacks

 messages.push(msg);​
 }​
 SignerEvent::MinerMessages(messages,
miner_pk.ok_or(EventError::EmptyChunksEvent)?)

​

Here we see that the signer event will contain only the last valid key, leading to inconsistent PK

usage if chunks have different keys. Messages may be incorrectly attributed to the last valid chunk's

PK, risking invalid signature verification or DoS.

Recommendation

Store each PK with each message.

Status

Resolved. The signer no longer relies on public keys from events. Fix committed on

4d299ed3ad420ca8d8d0bcef5c1817c2d121032d.

HI-02 Chunk size limit bypass

Location
●​ ./src/session.rs:[188.252]

Classification
●​ CWE-770: Allocation of Resources Without Limits or Throttling 2

Description

The get_chunk() and put_chunk() functions in the stackerDB session manager fail to enforce the

chunk size limit. Only get_latest_chunks() function correctly enforces chunk size limits. This

allows retrieval of oversized chunks, causing memory exhaustion during deserialization, leading to

Denial of Service.

We can see this simple size limit check on get_latest_chunks():

// Verify that the chunk is not too large​

 if body_bytes.len() > limit {​

 None​

 } else {​

 Some(body_bytes)​

 }

2 https://cwe.mitre.org/data/definitions/770.html

Page 5 of 12

 Security Audit Report: LibSigner - Stacks

​

Is missing on get_chunk() and put_chunk(), allowing unlimited sized chunk retrieval

from stackerDB.

Recommendation

Enforce size limits on all StackerDB chunk manager functions.

Status

Acknowledged. This size is checked by the StackerDB implementation. Coinfabrik still

recommends adding the size check in the libsigner project as validations must be done on the

library-side too, following the defensive programming technique.

Medium Severity Issues

No issues found.

Low Severity Issues

LO-01 Trivial Service Shutdown

Location
●​ ./src/event.rs:[315]

Classification
●​ CWE-400: Uncontrolled Resource Consumption 3

Description

The next_event function lacks authentication for critical endpoints like /shutdown, enabling

unauthenticated users to remotely terminate any utility that includes libsigner, leading to a

Denial-of-Service (DoS) vulnerability.

However, by issuing this simple command:

~$ curl -x POST host:30000/shutdown

3https://cwe.mitre.org/data/definitions/400.html

Page 6 of 12

 Security Audit Report: LibSigner - Stacks

​

This event will be caught by the libsigner event loop and will cause any utility that uses (including

signer-binary) to shutdown.

None of the commands are authenticated and they use highly insecure plain HTTP for

communication, but this might be accepted as the signer is expected to run in a trusted environment.

However, trivially shutting down the service from anywhere in the local network can be considered a

high-security issue.

Recommendation

Implement authentication for the shutdown command, or limit it to be used only from a trusted

host like localhost or a whitelisted admin IP.

Status

Acknowledged. Because it’s considered a trusted endpoint, only trusted callers should have any

access to these network RPC endpoints.

Enhancements

These items do not represent a security risk. They are best practices that we suggest

implementing.

Id Title Status

EN-01 CRLF Injection in RPC Request Not implemented

EN-01 CRLF Injection in RPC Request

Location
●​ ./src/http.rs:[239]

Description

The run_http_request() function lacks validation for CRLF injection in user-provided verb, path,

and host parameters, enabling HTTP header injection and potential request smuggling or response

Page 7 of 12

 Security Audit Report: LibSigner - Stacks

splitting attacks.​

We can see in this code snippet how the HTTP request is constructed:

format!("{} {} HTTP/1.1\r\nHost: {}\r\nConnection: close\r\n{}User-Agent:
libsigner/0.1\r\nAccept: */*\r\n\r\n",​
verb, path, host, content_length_hdr​
)

​

An attacker could set the path parameter to "/path HTTP/1.1\r\nInjected-Header:

value\r\n\r\n", injecting arbitrary headers into the request. Particularly, the rpc_request()

function uses this vulnerable http request, and while no vulnerable use of this function was

detected, it’s highly recommended to sanitize all inputs to it.

Recommendation

Sanitize verb, path, and host inputs by stripping or escaping CRLF sequences (\r, \n, %0D, %0A).

Status

Not implemented.

About CoinFabrik
CoinFabrik is a research and development company specialized in Web3, with a strong

background in cybersecurity. Founded in 2014, we have worked on over 500 decentralization

projects, including EVM-based and other platforms like Solana, Algorand, and Polkadot. Beyond

development, we offer security audits through a dedicated in-house team of senior cybersecurity

professionals, working on code in languages such as Substrate, Solidity, Clarity, Rust, TEAL, and

Stellar Soroban.

Our team has an academic background in computer science, software engineering, and

mathematics, with accomplishments including academic publications, patents turned into

products, and conference presentations. We actively research in collaboration with universities

worldwide, such as Cornell, UCLA, and École Polytechnique in Paris, and maintain an ongoing

collaboration on knowledge transfer and open-source projects with the University of Buenos

Aires, Argentina. Our management and people experience team has extensive expertise in the

field.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the

expected behavior, and general documentation about the project. Our auditors spent two weeks

Page 8 of 12

https://www.coinfabrik.com

 Security Audit Report: LibSigner - Stacks

auditing the source code provided, which includes understanding the context of use, analyzing

the boundaries of the expected behavior of each contract and function, understanding the

implementation by the development team (including dependencies beyond the scope to be

audited) and identifying possible situations in which the code allows the caller to reach a state

that exposes some vulnerability. Without being limited to them, the audit process included the

following analyses.

●​ Arithmetic errors

●​ Race conditions

●​ Misuse of block timestamps

●​ Denial of service attacks

●​ Missing or misused function qualifiers

●​ Needlessly complex code and contract interactions

●​ Poor or nonexistent error handling

●​ Insufficient validation of the input parameters

●​ Incorrect handling of cryptographic signatures

●​ Centralization and upgradeability

Page 9 of 12

 Security Audit Report: LibSigner - Stacks

Severity Classification
Security risks are classified as follows : 4

4 This classification is based on Immunefi severity classification system version 2.3.
https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

Page 10 of 12

❚ Critical

●​ Manipulation of governance voting result deviating from voted
outcome and resulting in a direct change from intended effect of
original results

●​ Direct theft of any user funds, whether at-rest or in-motion, other than
unclaimed yield

●​ Direct theft of any user NFTs, whether at-rest or in-motion, other than
unclaimed royalties

●​ Permanent freezing of funds

●​ Permanent freezing of NFTs

●​ Unauthorized minting of NFTs

●​ Predictable or manipulable RNG that results in abuse of the principal
or NFT

●​ Unintended alteration of what the NFT represents (e.g. token URI,
payload, artistic content)

●​ Protocol insolvency

❚ High

●​ Theft of unclaimed yield

●​ Theft of unclaimed royalties

●​ Permanent freezing of unclaimed yield

●​ Permanent freezing of unclaimed royalties

●​ Temporary freezing of funds

●​ Temporary freezing NFTs

https://immunefi.com/immunefi-vulnerability-severity-classification-system-v2-3/

 Security Audit Report: LibSigner - Stacks

Issue Status
An issue detected by this audit has one of the following statuses:

●​ Unresolved: The issue has not been resolved.

●​ Resolved: Adjusted program implementation to eliminate the risk.

●​ Partially Resolved: Adjusted program implementation to eliminate part of the risk. The

other part remains in the code, but is a result of an intentional decision.

●​ Acknowledged: The issue remains in the code, but is a result of an intentional decision.

The reported risk is accepted by the development team.

●​ Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Disclaimer
This audit report has been conducted on a best-effort basis within a tight deadline defined

by time and budget constraints. We reviewed only the specific code provided by the client at

the time of the audit, detailed in the Scope section. We do not review other components that are

part of the solution: neither implementation, nor general design, nor business ideas that

motivate them.

While we have employed the latest tools, techniques, and methodologies to identify potential

vulnerabilities, this report does not guarantee the absolute security of the contracts, as

undiscovered vulnerabilities may still exist. Our findings and recommendations are

Page 11 of 12

❚ Medium

●​ Smart contract unable to operate due to lack of token funds

●​ Block stuffing

●​ Griefing (e.g. no profit motive for an attacker, but damage to the users
or the protocol)

●​ Theft of gas

●​ Unbounded gas consumption

●​ Security best practices not followed

❚ Low
●​ Contract fails to deliver promised returns, but doesn't lose value

●​ Other security issues with minor impact

 Security Audit Report: LibSigner - Stacks

suggestions to enhance security and functionality and are not obligations for the client to

implement.

The results of this audit are valid solely for the code and configurations reviewed, and any

modifications made after the audit are outside the scope of our responsibility. CoinFabrik

disclaims all liability for any damages, losses, or legal consequences resulting from the use or

misuse of the applications, including those arising from undiscovered vulnerabilities or changes

made to the codebase after the audit.

This report is intended exclusively for the Stacks team and should not be relied upon by any

third party without the explicit consent of CoinFabrik. Blockchain technology and smart contracts

are inherently experimental and involve significant risk; users and investors should fully

understand these risks before deploying or interacting with the audited contracts.

Changelog

Date Description

4 April 2025 Initial report based on commit c1a1f50fddcbc11054fae537103423e21221665a.

8 April 2025 Comments and fixes from the Stacks Team

30 April 2025 Final report based on commit 4d299ed3ad420ca8d8d0bcef5c1817c2d121032d

Page 12 of 12

	
	Security Audit Report
	
	Executive Summary
	Scope
	Findings
	Critical Severity Issues
	High Severity Issues
	HI-01 Incorrect Event Public Key
	Location
	Classification
	Description
	Recommendation
	Status

	HI-02 Chunk size limit bypass
	Location
	Classification
	Description
	Recommendation
	Status

	Medium Severity Issues
	Low Severity Issues
	LO-01 Trivial Service Shutdown
	Location
	Classification
	Description
	Recommendation
	Status

	Enhancements
	EN-01 CRLF Injection in RPC Request
	Location
	Description
	Recommendation
	Status

	About CoinFabrik
	Methodology
	Severity Classification
	Issue Status
	Disclaimer
	Changelog

