
Stacks sBTCWithdrawal
Security Assessment

April 10th, 2025 — Prepared by OtterSec

Samuel Bétrisey sam@osec.io

Renato Eugenio Maria Marziano renato@osec.io

Robert Chen r@osec.io

mailto:sam@osec.io
mailto:renato@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-SBT-ADV-00 | Exposed Event Port 6

OS-SBT-ADV-01 | DOS Due to Unchecked Stacks Transaction Fee 7

OS-SBT-ADV-02 | Missing Nonce Validation 8

OS-SBT-ADV-03 | Inconsistent Dust Limit Enforcement 9

OS-SBT-ADV-04 | Threshold Signature Abuse via Signature Withholding 11

General Findings 12

OS-SBT-SUG-00 | Unauthorized Withdrawal Due to Utilization of Tx-Sender 13

OS-SBT-SUG-01 | Disconnecting P2P Connections with Removed Peers 14

OS-SBT-SUG-02 | Code Refactoring 15

Appendices

Vulnerability Rating Scale 17

Procedure 18

© 2025 Otter Audits LLC. All Rights Reserved. 1 / 18

01 — Executive Summary

Overview

Stacks Network engaged OtterSec to assess the sBTCsBTC implementation, focusing specifically on the

withdrawals functionality. This assessment was conducted between February 18th and April 2nd, 2025.

For more information on our auditing methodology, refer to Appendix B.

Key Findings

We produced 8 findings throughout this audit engagement.

In particular, we identified a vulnerability where exposing the Stacks event-observer port enables attackers

to submit fake Stacks events to the signer, resulting in unauthorized modifications of the signer’s database

without verification (OS-SBT-ADV-00). Additionally, the lack of nonce validation in the transaction

signing process allows a malicious coordinator to request signatures for transactions with inflated nonces,

potentially causing future transactions to fail when broadcast (OS-SBT-ADV-02). Furthermore, the dust

limit validation is inconsistent across deposits and withdrawals, allowing deposits at the dust limit but

rejecting withdrawals of the same amount, resulting in locking of user funds (OS-SBT-ADV-03).

We also made recommendations for modifying the codebase for improved functionality, efficiency, and

robustness (OS-SBT-SUG-02), and suggested ensuring the system disconnects removed peers and

handles all other message types appropriately (OS-SBT-SUG-01). We further advised utilizing contract

caller instead of tx-sender while initiating a withdrawal request to prevent malicious contracts from

exploiting post-conditions to withdraw a user’s sBTC (OS-SBT-SUG-00).

© 2025 Otter Audits LLC. All Rights Reserved. 2 / 18

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/stacks-network/sbtc. This

audit was performed against 475f845.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

sBTC

The Stacks sBTC module enables Bitcoin to be represented as a SIP-

010 token (sBTC) on the Stacks blockchain, allowing BTC holders to

access smart contracts and DeFi.

© 2025 Otter Audits LLC. All Rights Reserved. 3 / 18

https://github.com/stacks-network/sbtc
https://github.com/stacks-network/sbtc/commit/475f845a9e532c11155aa327e760843eb24a9196

03 — Findings

Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 3

MEDIUMMEDIUM 1

LOWLOW 1

INFOINFO 3

© 2025 Otter Audits LLC. All Rights Reserved. 4 / 18

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-SBT-ADV-00
HIGHHIGH RESOLVEDRESOLVED

Exposing the Stacks event-observer port al-

lows potential attackers to submit fake Stacks

events to the signer, resulting in unauthorized

modifications of the signer’s database without

verification.

OS-SBT-ADV-01
HIGHHIGH RESOLVEDRESOLVED

Transaction signers do not validate the

tx_feetx_fee , allowing a malicious coordinator to
set excessively high fees that may drain the

multisig wallet, preventing future transactions

until it is refilled.

OS-SBT-ADV-02
MEDIUMMEDIUM RESOLVEDRESOLVED

The lack of nonce validation in the transaction

signing process allows a malicious coordi-

nator to request signatures for transactions

with inflated nonces, potentially causing fu-

ture transactions to fail when broadcast.

OS-SBT-ADV-03
LOWLOW RESOLVEDRESOLVED

The dust limit validation is inconsistent across

deposits and withdrawals, allowing deposits

at the dust limit but rejecting withdrawals of

the same amount, resulting in the locking of

user funds.

OS-SBT-ADV-04
HIGHHIGH RESOLVEDRESOLVED

Amalicious signermaywithhold their final sig-

nature share, collect others’, and later finalize

and broadcast a BTCBTC withdrawal after the

request is rejected and sBTCsBTC is unlocked.

© 2025 Otter Audits LLC. All Rights Reserved. 5 / 18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Exposed Event Port HIGHHIGH OS-SBT-ADV-00

Description

The docker-compose.ymldocker-compose.yml configuration exposes port 88018801 on the Stacks sBTC signer container to

all interfaces in the default mainnet Docker setup. Moreover, the Stacks event-observer does not validate

the source of incoming events. This poses a risk, as Docker iptables rules generally take precedence, and

signers are aware of each other’s IP addresses, allowing potential P2P communication. Thus, without an

added firewall, an attacker may submit new_blocknew_block notifications with fake Stacks events, which will be

accepted and added to the signer’s database without verification. If enough signers are vulnerable to this

attack, it is possible to create fake withdrawals and steal the BTC controlled by the signers.

Remediation

Restrict the port to trusted sources, and implement source validation on the event-observer to ensure

that incoming events originate from trusted sources.

Patch

Resolved in 8d2e6de.

© 2025 Otter Audits LLC. All Rights Reserved. 6 / 18

https://github.com/stacks-sbtc/sbtc/commit/8d2e6de045d4229d11f4fe3e308dde3dd4918389

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

DOS Due to Unchecked Stacks Transaction Fee HIGHHIGH OS-SBT-ADV-01

Description

In transaction_signer::handle_stacks_transaction_sign_requesttransaction_signer::handle_stacks_transaction_sign_request , the multisig transaction

is constructed without validating the tx_feetx_fee parameter. The signers do not validate the tx_feetx_fee of

Stacks transactions, and request.tx_feerequest.tx_fee is passed directly into the transaction creation process. This

enables a malicious transaction coordinator to set an excessively high transaction fee (tx_feetx_fee), which
the other signers will sign, draining the multisig wallet’s STXSTX balance. This will leave the multisig wallet

with zero STXSTX , preventing any future transactions until the multisig wallet is funded with STXSTX .

>_ sbtc/signer/src/transaction_signer.rs rust

async fn handle_stacks_transaction_sign_request(
&mut self,
request: &StacksTransactionSignRequest,
chain_tip: &model::BitcoinBlockRef,
origin_public_key: &PublicKey,

) -> Result<(), Error> {
[...]
let multi_sig = MultisigTx::new_tx(&request.contract_tx, &wallet, request.tx_fee);
let txid = multi_sig.tx().txid();
[...]

}

Remediation

Introduce a global fee limit per transaction, such that the signers reject any transaction where tx_feetx_fee
exceeds this limit.

Patch

Resolved in 7da327c.

© 2025 Otter Audits LLC. All Rights Reserved. 7 / 18

https://github.com/stacks-sbtc/sbtc/commit/7da327c5380199af30b2386a34d3bb0feede0b14

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Missing Nonce Validation MEDIUMMEDIUM OS-SBT-ADV-02

Description

Currently, the nonce of Stacks transactions is not validated by signers in

handle_stacks_transaction_sign_requesthandle_stacks_transaction_sign_request in transaction_signertransaction_signer . This implies that the nonce

provided in StacksTransactionSignRequestStacksTransactionSignRequest is directly utilized to set the nonce for signing the

transaction. Thus, a malicious transaction coordinator may craft a request to sign a transaction with a

higher nonce and broadcast it later, rendering a future stacks transaction to fail.

>_ sbtc/signer/src/transaction_signer.rs rust

async fn handle_stacks_transaction_sign_request(
&mut self,
request: &StacksTransactionSignRequest,
chain_tip: &model::BitcoinBlockRef,
origin_public_key: &PublicKey,

) -> Result<(), Error> {
[...]
// We need to set the nonce in order to get the exact transaction
// that we need to sign.
let wallet = SignerWallet::load(&self.context, &chain_tip.block_hash).await?;
wallet.set_nonce(request.nonce);
[...]

}

Remediation

Ensure the signers validate that the provided nonce is greater by a single value before setting the nonce

and signing the transaction.

Patch

Fix in progress.

© 2025 Otter Audits LLC. All Rights Reserved. 8 / 18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Inconsistent Dust Limit Enforcement LOWLOW OS-SBT-ADV-03

Description

The vulnerability arises due to inconsistent validation of the dust limit across different parts of the

system. The dust limit is a threshold below which a transaction amount is considered too small to

be processed meaningfully. Currently, the system allows a deposit if the amount is greater than or

equal to the dust-limitdust-limit , but in sbtc-withdrawa::initiate-withdrawal-requestsbtc-withdrawa::initiate-withdrawal-request , a withdrawal
is only allowed if the amount is strictly greater than the dust limit. The Rust-based signer logic in

WithdrawalRequestReport::validateWithdrawalRequestReport::validate allows withdrawals when the amount is equal to or greater

than the dust limit.

>_ contracts/contracts/sbtc-deposit.clar rust

;; Accept a new deposit request
(define-public (complete-deposit-wrapper ([...])

(let
(

(current-signer-data (contract-call? .sbtc-registry
get-current-signer-data))↪→

(replay-fetch (contract-call? .sbtc-registry get-deposit-status txid
vout-index))↪→

)
[...]
;; Check that amount is greater than dust limit
(asserts! (>= amount dust-limit) ERR_LOWER_THAN_DUST)
[...]

)
)

Thus, in the existing implementation, a user may successfully deposit an amount exactly equal to the dust

limit. However, when they attempt to withdraw the same amount, the contract rejects it. This effectively

locks the funds in the system, as withdrawals below or equal to the dust limit are not permitted.

>_ contracts/contracts/sbtc-withdrawal.clar rust

(define-public (initiate-withdrawal-request (amount uint)
[...]
(begin

(try! (contract-call? .sbtc-token protocol-lock (+ amount max-fee) tx-sender
withdraw-role))↪→

(asserts! (> amount DUST_LIMIT) ERR_DUST_LIMIT)
[...]

)
)

© 2025 Otter Audits LLC. All Rights Reserved. 9 / 18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Remediation

Ensure uniform conditions for deposits and withdrawals by aligning all dust limit checks across the system.

Patch

Fix in progress.

© 2025 Otter Audits LLC. All Rights Reserved. 10 / 18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Threshold Signature Abuse via Signature Withholding HIGHHIGH OS-SBT-ADV-04

Description

A malicious signer may collect signature shares from T−1T−1 honest parties but intentionally withhold their

own, preventing the completion of a BTCBTC withdrawal transaction. Once the on-chain withdrawal request

is rejected and the sBTCsBTC is unlocked, the attacker may then finalize and broadcast the BTCBTC transaction

utilizing the previously collected shares. However, for this to be possible, there must be only T-1T-1 parties

signing the transaction. Thus, the attack is only feasible if the malicious signer controls at least N−T+1N−T+1
participants.

Remediation

Introduce an active withdrawal check to prevent premature rejection of withdrawal requests, ensuring

such active withdrawals are not rejected and the coordinator only processes safe-to-reject requests.

This prevents malicious signers from broadcasting transactions after sBTCsBTC is unlocked.

Patch

This issue was already identified by the team and fixed in PR#1411.

© 2025 Otter Audits LLC. All Rights Reserved. 11 / 18

https://github.com/stacks-sbtc/sbtc/pull/1411

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-SBT-SUG-00

initiate-withdrawal-requestinitiate-withdrawal-request utilizes tx-sendertx-sender rather than

contract-callercontract-caller , rendering it vulnerable to malicious contracts that

exploit post-conditions to withdraw a user’s sBTCsBTC .

OS-SBT-SUG-01

There is a discrepancy between the expected behavior and the current

implementation, where removed peers may still send messages that are

filtered by the is_allowed_peeris_allowed_peer check.

OS-SBT-SUG-02
Recommendation for modifying the codebase for improved functionality,

efficiency, and robustness.

© 2025 Otter Audits LLC. All Rights Reserved. 12 / 18

Stacks sBTC Withdrawal Audit 05 — General Findings

UnauthorizedWithdrawal Due to Utilization of Tx-Sender OS-SBT-SUG-00

Description

initiate-withdrawal-requestinitiate-withdrawal-request currently utilizes tx-sendertx-sender instead of contract-callercontract-caller . This
allows a malicious contract to trigger the function on behalf of a user, potentially draining their sBTCsBTC
holdings if they have approved sBTCsBTC spending in post-conditions. Furthermore, there are additional

issues concerning the utilization of tx-sendertx-sender .

>_ contracts/contracts/sbtc-withdrawal.clar rust

(define-public (initiate-withdrawal-request (amount uint)
[...]
(begin

(try! (contract-call? .sbtc-token protocol-lock (+ amount max-fee) tx-sender
withdraw-role))↪→

[...]
)

)

Allowing a contract to transfer a user’s sBTC may have a legitimate purpose, but letting a contract initiate

a withdrawal does not seem necessary. Also, if the transaction is simulated, the user will see that they will

receive locked sBTCsBTC in exchange. In a social engineering attack, this insight may be utilized to pretend

that the user is simply stacking tokens.

Remediation

Utilize contract-callercontract-caller instead of tx-sendertx-sender .

© 2025 Otter Audits LLC. All Rights Reserved. 13 / 18

Stacks sBTC Withdrawal Audit 05 — General Findings

Disconnecting P2P Connections with Removed Peers OS-SBT-SUG-01

Description

When the signing set is updated, the system does not immediately disconnect P2P connections with

peers who are removed from the set. This results in a situation where peers who are no longer part of the

allowed signer set may still send messages, but these messages are ignored because of the check in

handle_gossipsub_eventhandle_gossipsub_event . However, the comment indicates that this check may be unnecessary and
should be removed.

>_ sbtc/signer/src/network/libp2p/event_loop.rs rust

fn handle_gossipsub_event(
swarm: &mut Swarm<SignerBehavior>,
ctx: &impl Context,
event: gossipsub::Event,

) {
use gossipsub::Event;
match event {

Event::Message {
propagation_source: peer_id,
message,
..

} => {
let current_signer_set = ctx.state().current_signer_set();
// The following check should be unnecessary. In order to
// receive a message the peer needs to establish a connection,
// and in order to do that the peer needs to be in the current
// signer set. When we implement the signing set changing code,
// we should re-evaluate whether we should remove this check.
if !current_signer_set.is_allowed_peer(&peer_id) {

tracing::warn!(%peer_id, "ignoring message from unknown peer");
return;

}
[...]

}
[...]

}
}

Additionally, while the gossipsubgossipsub messages are filtered out due to the signer set check, other types of

messages, such as KademliaKademlia events, may still be processed.

Remediation

Ensure the system disconnects removed peers and handles all other message types appropriately.

© 2025 Otter Audits LLC. All Rights Reserved. 14 / 18

Stacks sBTC Withdrawal Audit 05 — General Findings

Code Refactoring OS-SBT-SUG-02

Description

1. In the current implementation, the transaction coordinator and transaction signer are initialized with

a static threshold value that is loaded from the configuration

(config.signer.bootstrap_signatures_requiredconfig.signer.bootstrap_signatures_required), which remains unchanged throughout
the runtime, potentially creating issues if the threshold needs dynamic adjustments based on evolving

conditions.

2. When the signer program starts, it loads the bootstrap_signing_setbootstrap_signing_set from the configuration.

However, the bootstrap_signing_setbootstrap_signing_set may be outdated because it is loaded at the time of

initialization from the configuration and utilizes this until the next Bitcoin block. If the set of valid

signers changes, the program will still utilize the outdated list. Thus, these signers may still establish

peer-to-peer (P2P) connections with the signer program. It would be appropriate to dynamically

check the validity of the signers in bootstrap_signing_setbootstrap_signing_set .

>_ sbtc/signer/src/main.rs rust

#[tracing::instrument(name = "signer")]
async fn main() -> Result<(), Box<dyn std::error::Error>> {

[...]
// TODO: We should first check "another source of truth" for the current
// signing set, and only assume we are bootstrapping if that source is
// empty.
let settings = context.config();
for signer in settings.signer.bootstrap_signing_set() {

context.state().current_signer_set().add_signer(signer);
}
[...]

}

3. In complete-individual-withdrawal-helpercomplete-individual-withdrawal-helper , most optional values (bitcoin-txidbitcoin-txid ,

output-indexoutput-index , and feefee) are checked via is-someis-some before unwrapping with unwrap-panicunwrap-panic .

However, sweep-txidsweep-txid is directly unwrapped (unwrap-panic (get sweep-txid withdrawal)unwrap-panic (get sweep-txid withdrawal)
) without a prior validation check. If sweep-txidsweep-txid is nonenone , calling unwrap-panicunwrap-panic will result

in a panic instead of returning an error with ERR_WITHDRAWAL_INDEX_PREFIX + indexERR_WITHDRAWAL_INDEX_PREFIX + index . Ensure
that if sweep-txidsweep-txid is missing, the function returns an appropriate error instead of terminating

unexpectedly.

4. The BTCBTC fee rate is determined by the transaction coordinator but is not independently validated by the
signers. While signers do verify that the fee remains within the user-specified maximum for deposits

or withdrawals, it is still advisable to explicitly validate the coordinator-proposed Bitcoin/Stacks fees

to ensure correctness and prevent potential misuse.

© 2025 Otter Audits LLC. All Rights Reserved. 15 / 18

Stacks sBTC Withdrawal Audit 05 — General Findings

Remediation

Incorporate the above-mentioned refactors.

© 2025 Otter Audits LLC. All Rights Reserved. 16 / 18

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 17 / 18

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 18 / 18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-SBT-ADV-00 | Exposed Event Port
	[8.75em][l]OS-SBT-ADV-01 | DOS Due to Unchecked Stacks Transaction Fee
	[8.75em][l]OS-SBT-ADV-02 | Missing Nonce Validation
	[8.75em][l]OS-SBT-ADV-03 | Inconsistent Dust Limit Enforcement
	[8.75em][l]OS-SBT-ADV-04 | Threshold Signature Abuse via Signature Withholding

	General Findings
	[8.75em][l]OS-SBT-SUG-00 | Unauthorized Withdrawal Due to Utilization of Tx-Sender
	[8.75em][l]OS-SBT-SUG-01 | Disconnecting P2P Connections with Removed Peers
	[8.75em][l]OS-SBT-SUG-02 | Code Refactoring

	Appendices
	Vulnerability Rating Scale
	Procedure

