GO otterSec

Security Assessment

April 10th, 2025 — Prepared by OtterSec

Samuel Bétrisey

Renato Eugenio Maria Marziano

Robert Chen

sam@osec.io

renato@osec.io

r@osec.io

mailto:sam@osec.io
mailto:renato@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary

Overview
Key Findings
Scope
Findings
Vulnerabilities
0S-SBT-ADV-00 | Exposed Event Port
OS-SBT-ADV-01 | DOS Due to Unchecked Stacks Transaction Fee
0S-SBT-ADV-02 | Missing Nonce Validation
0S-SBT-ADV-03 | Inconsistent Dust Limit Enforcement
0S-SBT-ADV-04 | Threshold Signature Abuse via Signature Withholding
General Findings
0S-SBT-SUG-00 | Unauthorized Withdrawal Due to Utilization of Tx-Sender
0S-SBT-SUG-01 | Disconnecting P2P Connections with Removed Peers

0S-SBT-SUG-02 | Code Refactoring
Appendices

Vulnerability Rating Scale

Procedure

© 2025 Otter Audits LLC. All Rights Reserved.

11

12

13

14

15

17

18

1/18

01 — Executive Summary

Overview

Stacks Network engaged OtterSec to assess the sBTC implementation, focusing specifically on the
withdrawals functionality. This assessment was conducted between February 18th and April 2nd, 2025.
For more information on our auditing methodology, refer to Appendix B.

Key Findings
We produced 8 findings throughout this audit engagement.

In particular, we identified a vulnerability where exposing the Stacks event-observer port enables attackers
to submit fake Stacks events to the signer, resulting in unauthorized modifications of the signer’'s database
without verification (OS-SBT-ADV-00). Additionally, the lack of nonce validation in the transaction
signing process allows a malicious coordinator to request signatures for transactions with inflated nonces,
potentially causing future transactions to fail when broadcast (OS-SBT-ADV-02). Furthermore, the dust
limit validation is inconsistent across deposits and withdrawals, allowing deposits at the dust limit but
rejecting withdrawals of the same amount, resulting in locking of user funds (OS-SBT-ADV-03).

We also made recommendations for modifying the codebase for improved functionality, efficiency, and
robustness (OS-SBT-SUG-02), and suggested ensuring the system disconnects removed peers and
handles all other message types appropriately (0OS-SBT-SUG-01). We further advised utilizing contract
caller instead of tx-sender while initiating a withdrawal request to prevent malicious contracts from
exploiting post-conditions to withdraw a user’'s sBTC (OS-SBT-SUG-00).

© 2025 Otter Audits LLC. All Rights Reserved. 2/18

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/stacks -network/sbtc. This
audit was performed against 475f845.

A brief description of the program is as follows:

Name Description

The Stacks sBTC module enables Bitcoin to be represented as a SIP-
sBTC 010 token (sBTC) on the Stacks blockchain, allowing BTC holders to
access smart contracts and DeFi.

© 2025 Otter Audits LLC. All Rights Reserved. 3/18

https://github.com/stacks-network/sbtc
https://github.com/stacks-network/sbtc/commit/475f845a9e532c11155aa327e760843eb24a9196

03 — Findings

Overall, we reported 8 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will
aid in mitigating future vulnerabilities.

Severity

CRITICAL O
HIGH 3
MEDIUM 1
LOW 1
INFO 3

© 2025 Otter Audits LLC. All Rights Reserved. 4718

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

Exposing the Stacks event-observer port al-
lows potential attackers to submit fake Stacks
events to the signer, resulting in unauthorized
modifications of the signer’'s database without
verification.

05-SBT-ADV-00 HIGH RESOLVED @

Transaction signers do not validate the
tx_fee , allowing a malicious coordinator to
set excessively high fees that may drain the
multisig wallet, preventing future transactions
until it is refilled.

05-SBT-ADV-01 HIGH RESOLVED ®

The lack of nonce validation in the transaction
signing process allows a malicious coordi-
nator to request signatures for transactions
with inflated nonces, potentially causing fu-
ture transactions to fail when broadcast.

0S-SBT-ADV-02 MEDIUM RESOLVED @

The dust limit validation is inconsistent across
deposits and withdrawals, allowing deposits
at the dust limit but rejecting withdrawals of
the same amount, resulting in the locking of
user funds.

05-SBT-ADV-03 LOW RESOLVED ©

A malicious signer may withhold their final sig -
nature share, collect others’, and later finalize
HIGH RESOLVED ® ' !
OS-SBT-ADV-04 and broadcast a BTC withdrawal after the
request is rejected and sBTC is unlocked.

© 2025 Otter Audits LLC. All Rights Reserved. 5/18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Exposed Event Port HiGH 0S-SBT-ADV-00

Description

The docker-compose.yml configuration exposes port 8801 on the Stacks sBTC signer container to
all interfaces in the default mainnet Docker setup. Moreover, the Stacks event-observer does not validate
the source of incoming events. This poses a risk, as Docker iptables rules generally take precedence, and
signers are aware of each other’s IP addresses, allowing potential P2P communication. Thus, without an
added firewall, an attacker may submit new_block notifications with fake Stacks events, which will be
accepted and added to the signer’s database without verification. If enough signers are vulnerable to this
attack, it is possible to create fake withdrawals and steal the BTC controlled by the signers.

Remediation

Restrict the port to trusted sources, and implement source validation on the event-observer to ensure
that incoming events originate from trusted sources.

Patch

Resolved in 8d2e6de.

© 2025 Otter Audits LLC. All Rights Reserved. 6/18

https://github.com/stacks-sbtc/sbtc/commit/8d2e6de045d4229d11f4fe3e308dde3dd4918389

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

DOS Due to Unchecked Stacks Transaction Fee HiGH 0S-SBT-ADV-01

Description

In transaction_signer::handle_stacks_transaction_sign_request , the multisig transaction
is constructed without validating the tx_fee parameter. The signers do not validate the tx_fee of
Stacks transactions, and request.tx_fee is passed directly into the transaction creation process. This
enables a malicious transaction coordinator to set an excessively high transaction fee (tx_fee), which
the other signers will sign, draining the multisig wallet's STX balance. This will leave the multisig wallet
with zero STX , preventing any future transactions until the multisig wallet is funded with STX .

>_ sbtc/signer/src/transaction_signer.rs

async fn handle_stacks_transaction_sign_request(

&mut self,

request: &StacksTransactionSignRequest,

chain_tip: &model: :BitcoinBlockRef,

origin_public_key: &PublicKey,
) —> Result<(), Error> {

[...]

let multi_sig = MultisigTx::new_tx(&request.contract_tx, &wallet, request.tx_fee);

let txid = multi_sig.tx().txid();

[...]

Remediation

Introduce a global fee limit per transaction, such that the signers reject any transaction where tx_fee
exceeds this limit.

Patch

Resolved in 7da327c.

© 2025 Otter Audits LLC. All Rights Reserved. 7118

https://github.com/stacks-sbtc/sbtc/commit/7da327c5380199af30b2386a34d3bb0feede0b14

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Missing Nonce Validation Mebium 0S-SBT-ADV-02

Description

Currently, the nonce of Stacks transactions is not validated by signers in
handle_stacks_transaction_sign_request in transaction_signer . Thisimplies that the nonce
provided in StacksTransactionSignRequest is directly utilized to set the nonce for signing the
transaction. Thus, a malicious transaction coordinator may craft a request to sign a transaction with a
higher nonce and broadcast it later, rendering a future stacks transaction to fail.

>_ sbtc/signer/src/transaction_signer.rs

async fn handle_stacks_transaction_sign_request(
&mut self,
request: &StacksTransactionSignRequest,
chain_tip: &model: :BitcoinBlockRef,
origin_public_key: &PublicKey,

) -> Result<(), Error> {
[oao]

let wallet = SignerWallet::load(&self.context, &chain_tip.block_hash).await?;
wallet.set_nonce(request.nonce);

[coo]

Remediation

Ensure the signers validate that the provided nonce is greater by a single value before setting the nonce
and signing the transaction.

Patch

Fix in progress.

© 2025 Otter Audits LLC. All Rights Reserved. 8/18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Inconsistent Dust Limit Enforcement Low 0S-SBT-ADV-03

Description

The vulnerability arises due to inconsistent validation of the dust limit across different parts of the
system. The dust limit is a threshold below which a transaction amount is considered too small to
be processed meaningfully. Currently, the system allows a deposit if the amount is greater than or
equal to the dust-limit, butin sbtc-withdrawa::initiate-withdrawal-request ,k a withdrawal
is only allowed if the amount is strictly greater than the dust limit. The Rust-based signer logic in
WithdrawalRequestReport::validate allows withdrawals when the amount is equal to or greater
than the dust limit.

>_ contracts/contracts/sbtc-deposit.clar

;3 Accept a new deposit request
(define-public (complete-deposit-wrapper ([...])
(let
(
(current-signer-data (contract-call? .sbtc-registry
— get-current-signer-data))
(replay-fetch (contract-call? .sbtc-registry get-deposit-status txid
— vout-index))
)
[...]
;5 Check that amount is greater than dust limit
(asserts! (>= amount dust-1limit) ERR_LOWER_THAN_DUST)
[...]

Thus, in the existing implementation, a user may successfully deposit an amount exactly equal to the dust
limit. However, when they attempt to withdraw the same amount, the contract rejects it. This effectively
locks the funds in the system, as withdrawals below or equal to the dust limit are not permitted.

>_ contracts/contracts/sbtc - withdrawal.clar

(define-public (initiate-withdrawal-request (amount uint)
[...]
(begin
(try! (contract-call? .sbtc-token protocol-lock (+ amount max-fee) tx-sender

— withdraw-role))
(asserts! (> amount DUST_LIMIT) ERR_DUST_LIMIT)

© 2025 Otter Audits LLC. All Rights Reserved. 9/18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Remediation

Ensure uniform conditions for deposits and withdrawals by aligning all dust limit checks across the system.

Patch

Fix in progress.

© 2025 Otter Audits LLC. All Rights Reserved. 10/18

Stacks sBTC Withdrawal Audit 04 — Vulnerabilities

Threshold Signature Abuse via Signature Withholding HiéH 0S-SBT-ADV-04

Description

A malicious signer may collect signature shares from T-1 honest parties but intentionally withhold their
own, preventing the completion of a BTC withdrawal transaction. Once the on-chain withdrawal request
is rejected and the sBTC is unlocked, the attacker may then finalize and broadcast the BTC transaction
utilizing the previously collected shares. However, for this to be possible, there must be only T-1 parties
signing the transaction. Thus, the attack is only feasible if the malicious signer controls at least N-T+1
participants.

Remediation

Introduce an active withdrawal check to prevent premature rejection of withdrawal requests, ensuring
such active withdrawals are not rejected and the coordinator only processes safe-to-reject requests.
This prevents malicious signers from broadcasting transactions after sBTC is unlocked.

Patch

This issue was already identified by the team and fixed in PR#1411.

© 2025 Otter Audits LLC. All Rights Reserved. 11/18

https://github.com/stacks-sbtc/sbtc/pull/1411

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

initiate-withdrawal-request utilizes +tx-sender rather than
0S-SBT-SUG-00 contract-caller , rendering it vulnerable to malicious contracts that
exploit post-conditions to withdraw a user's sBTC .

There is a discrepancy between the expected behavior and the current
0S-SBT-SUG-01 @plementahon, where removed peers may still send messages that are
filtered by the 1is_allowed_peer check.

Recommendation for modifying the codebase for improved functionality,

0OS-SBT-SUG-02
efficiency, and robustness.

© 2025 Otter Audits LLC. All Rights Reserved. 12 /18

Stacks sBTC Withdrawal Audit 05 — General Findings

Unauthorized Withdrawal Due to Utilization of Tx-Sender 0S-SBT-SUG-00

Description

initiate-withdrawal-request currently utilizes tx-sender instead of contract-caller . This

allows a malicious contract to trigger the function on behalf of a user, potentially draining their sBTC
holdings if they have approved sBTC spending in post-conditions. Furthermore, there are additional
issues concerning the utilization of tx-sender .

>_ contracts/contracts/sbtc - withdrawal.clar

(define-public (initiate-withdrawal-request (amount uint)

[...]
(begin

(try! (contract-call? .sbtc-token protocol-lock (+ amount max-fee) tx-sender
— withdraw-role))

Allowing a contract to transfer a user’'s sBTC may have a legitimate purpose, but letting a contract initiate
a withdrawal does not seem necessary. Also, if the transaction is simulated, the user will see that they will
receive locked sBTC in exchange. In a social engineering attack, this insight may be utilized to pretend
that the user is simply stacking tokens.

Remediation

Utilize contract-caller instead of tx-sender .

© 2025 Otter Audits LLC. All Rights Reserved. 13/18

Stacks sBTC Withdrawal Audit 05 — General Findings

Disconnecting P2P Connections with Removed Peers 0S-SBT-SUG-01

Description

When the signing set is updated, the system does not immediately disconnect P2P connections with
peers who are removed from the set. This results in a situation where peers who are no longer part of the
allowed signer set may still send messages, but these messages are ignored because of the check in
handle_gossipsub_event . However, the comment indicates that this check may be unnecessary and
should be removed.

>_ sbtc/signer/src/network/libp2p/event_loop.rs

fn handle_gossipsub_event(
swarm: &mut Swarm<SignerBehavior>,
ctx: &impl Context,
event: gossipsub::Event,

use gossipsub::Event;
match event {
Event: :Message {
propagation_source: peer_id,
message,

F=>{

let current_signer_set = ctx.state().current_signer_set();

if lcurrent_signer_set.is_allowed_peer (&peer_id) {
tracing: :warn! (%peer_id, "dignoring message from unknown
return;

Additionally, while the gossipsub messages are filtered out due to the signer set check, other types of
messages, such as Kademlia events, may still be processed.

Remediation

Ensure the system disconnects removed peers and handles all other message types appropriately.

© 2025 Otter Audits LLC. All Rights Reserved. 14 /18

Stacks sBTC Withdrawal Audit 05 — General Findings

Code Refactoring 0S-SBT-SUG-02

Description

1. In the current implementation, the transaction coordinator and transaction signer are initialized with
a static threshold value that is loaded from the configuration
(config.signer.bootstrap_signatures_required), which remains unchanged throughout
the runtime, potentially creating issues if the threshold needs dynamic adjustments based on evolving
conditions.

2. When the signer program starts, it loads the bootstrap_signing_set from the configuration.

However, the bootstrap_signing_set may be outdated because it is loaded at the time of
initialization from the configuration and utilizes this until the next Bitcoin block. If the set of valid
signers changes, the program will still utilize the outdated list. Thus, these signers may still establish
peer-to-peer (P2P) connections with the signer program. It would be appropriate to dynamically
check the validity of the signers in bootstrap_signing_set.

>_ sbtc/signer/src/main.rs

"signer"
async fn main() -> Result<(), Box<dyn std::error::Error>> {

[oool

let settings = context.config();
for signer in settings.signer.bootstrap_signing_set() {
context.state().current_signer_set().add_signer(signer);

3. In complete-individual-withdrawal-helper , most optional values (bitcoin-txid,
output-index , and fee) are checked via is-some before unwrapping with unwrap-panic.
However, sweep-txid is directly unwrapped (unwrap-panic (get sweep-txid withdrawal)
) without a prior validation check. If sweep-txid is none, calling unwrap-panic will result
in a panic instead of returning an error with ERR_WITHDRAWAL_INDEX_PREFIX + +index . Ensure
that if sweep-txid is missing, the function returns an appropriate error instead of terminating
unexpectedly.

4. The BTC feerate is determined by the transaction coordinator but is not independently validated by the
signers. While signers do verify that the fee remains within the user-specified maximum for deposits

or withdrawals, it is still advisable to explicitly validate the coordinator-proposed Bitcoin/Stacks fees
to ensure correctness and prevent potential misuse.

© 2025 Otter Audits LLC. All Rights Reserved. 15/18

Stacks sBTC Withdrawal Audit 05 — General Findings

Remediation

Incorporate the above -mentioned refactors.

© 2025 Otter Audits LLC. All Rights Reserved. 16/18

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

» Misconfigured authority or access control validation.
« Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

» Loss of funds requiring specific victim interactions.
+ Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

+ Computational limit exhaustion through malicious input.
e Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

o Explicit assertion of critical internal invariants.
¢ Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 17 /18

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program'’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle
is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 18/18

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-SBT-ADV-00 | Exposed Event Port
	[8.75em][l]OS-SBT-ADV-01 | DOS Due to Unchecked Stacks Transaction Fee
	[8.75em][l]OS-SBT-ADV-02 | Missing Nonce Validation
	[8.75em][l]OS-SBT-ADV-03 | Inconsistent Dust Limit Enforcement
	[8.75em][l]OS-SBT-ADV-04 | Threshold Signature Abuse via Signature Withholding

	General Findings
	[8.75em][l]OS-SBT-SUG-00 | Unauthorized Withdrawal Due to Utilization of Tx-Sender
	[8.75em][l]OS-SBT-SUG-01 | Disconnecting P2P Connections with Removed Peers
	[8.75em][l]OS-SBT-SUG-02 | Code Refactoring

	Appendices
	Vulnerability Rating Scale
	Procedure

