
StacksWSTS
Security Assessment

February 4th, 2025 — Prepared by OtterSec

Tuyết Dương tuyet@osec.io

Himanshu Sheoran deuterium@osec.io

Nakul Choudhary quasar@osec.io

Robert Chen r@osec.io

mailto:tuyet@osec.io
mailto:deuterium@osec.io
mailto:quasar@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary 3

Overview 3

Key Findings 3

Scope 4

Findings 5

Vulnerabilities 6

OS-STS-ADV-00 | Invalid Signatures Due to Mismatch in Key IDs 8

OS-STS-ADV-01 | Lack of Inclusion of Key ID in Signature Hash 10

OS-STS-ADV-02 | Out of Range Key IDS in FROST 11

OS-STS-ADV-03 | Possibility of Overwriting Public Share 12

OS-STS-ADV-04 | Malicious Share Overwrite 14

OS-STS-ADV-05 | Improper Validation of Empty Shares Vectors 15

OS-STS-ADV-06 | Protocol Participation Without Associated Keys 17

OS-STS-ADV-07 | Threshold Manipulation via Incorrect Submission of Key IDs 18

OS-STS-ADV-08 | Failure to Filter Invalid Key ID 19

General Findings 20

OS-STS-SUG-00 | Batch Verification Bypass 21

OS-STS-SUG-01 | Code Maturity 22

OS-STS-SUG-02 | Deviation from FROST Standards 23

Appendices

Vulnerability Rating Scale 24

Procedure 25

© 2025 Otter Audits LLC. All Rights Reserved. 1 / 25

Stacks WSTS Audit

TABLE OF CONTENTS

© 2025 Otter Audits LLC. All Rights Reserved. 2 / 25

01 — Executive Summary

Overview

Trust Machines engaged OtterSec to assess the wstswsts program. This assessment was conducted

between January 21st and January 31st, 2025. For more information on our auditing methodology, refer

to Appendix B.

Key Findings

We produced 12 findings throughout this audit engagement.

In particular, we identified several high vulnerabilities, including an absence of verification to ensure

that the key IDs provided in the nonce gathering round and the signature share verification phase are

consistent, allowing malicious parties to provide fewer key IDs in their signature shares, resulting in invalid

signatures (OS-STS-ADV-00).

Furthermore, malicious parties may send fewer private shares than expected, resulting in timeouts and

incorrect threshold evaluations, whichmay allow the protocol to proceed despite missing the required share

count (OS-STS-ADV-07), and there is a lack of validation to ensure that the number of keys per participant

is greater than or equal to the number of participating parties, enabling parties without associated keys to

participate in the protocol, performing actions such as sending nonces (OS-STS-ADV-06).

Additionally, The FIRE algorithm’s utilization of signer key IDs may allow zero key ID values during signer

initialization and private share distribution, risking exposure of private signing keys associated with such

IDs (OS-STS-ADV-08).

We also advised to ensure adherence to the FROST standard, as in the current implementation, the

omission of hashing the group public key when computing the binding factor deviates from the FROST

standard (OS-STS-SUG-02). Lastly, we provided suggestions to address the possibility of batching

private share verifications, allowing an adversary to manipulate the shares such that their sum appears

valid, even if the individual shares themselves are invalid (??.

© 2025 Otter Audits LLC. All Rights Reserved. 3 / 25

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/Trust-Machines/wsts. This

audit was performed against 612c023.

A brief description of the program is as follows:A brief description of the program is as follows:

NameName DescriptionDescription

wsts

A system for creating Weighted Schnorr Threshold Signatures (Wi-

leyProofs). It enables a group of signers, each controlling a set of

keys, to produce a valid Schnorr signature, provided that at least T (the

threshold) signers act honestly.

© 2025 Otter Audits LLC. All Rights Reserved. 4 / 25

https://github.com/Trust-Machines/wsts
https://github.com/Trust-Machines/wsts/commit/612c0230d3469e5807575d32da7f6c992e2f6177

03 — Findings

Overall, we reported 12 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 0

HIGHHIGH 5

MEDIUMMEDIUM 0

LOWLOW 4

INFOINFO 3

© 2025 Otter Audits LLC. All Rights Reserved. 5 / 25

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-STS-ADV-00
HIGHHIGH RESOLVEDRESOLVED

There is no verification to ensure that the

key_idskey_ids provided in the nonce gathering

round and in the signature share verification are

consistent, allowing malicious parties to pro-

vide fewer key_idskey_ids in their signature shares,

resulting in invalid signatures.

OS-STS-ADV-01
HIGHHIGH RESOLVEDRESOLVED

The absence of key ID hashing in the

SignatureShareResponseSignatureShareResponse message al-

lows for potential manipulation of key IDs

without detection, compromising the integrity

of the signature sharing process.

OS-STS-ADV-02
HIGHHIGH RESOLVEDRESOLVED

gather_noncesgather_nonces in the FROST implementation

lacks validation for the key_idskey_ids field, allow-

ing malicious parties to provide out-of-range

values, resulting in the failure of signature share

verification.

OS-STS-ADV-03
HIGHHIGH RESOLVEDRESOLVED

A malicious party may submit a public share

utilizing another signer’s party ID, overwriting

the original commitment. This results in a failure

of verification in compute_secretcompute_secret , falsely

marking the legitimate signer as malicious.

OS-STS-ADV-04
HIGHHIGH RESOLVEDRESOLVED

A malicious party may manipulate src_idsrc_id to

overwrite legitimate private shares and select

public and private shares that pass verification

in compute_secretcompute_secret to replace the actual se-

cret shares with their chosen values, thereby

compromising the DKG process.

© 2025 Otter Audits LLC. All Rights Reserved. 6 / 25

Stacks WSTS Audit 04 — Vulnerabilities

OS-STS-ADV-05
LOWLOW RESOLVEDRESOLVED

dkg_endeddkg_ended fails to properly handle empty

commscomms in dkg_public_sharesdkg_public_shares and empty

shares in dkg_private_sharesdkg_private_shares , allowing

missing shares to go undetected.

OS-STS-ADV-06
LOWLOW RESOLVEDRESOLVED

There is no check to ensure that nk ≥ np, allow-

ing parties without associated keys to partici-

pate in the protocol and perform actions such

as sending nonces.

OS-STS-ADV-07
LOWLOW RESOLVEDRESOLVED

Malicious parties may send fewer private shares

than expected, resulting in timeouts and incor-

rect threshold evaluations that may allow the

protocol to proceed despite missing the required

share count.

OS-STS-ADV-08
LOWLOW RESOLVEDRESOLVED

The FIRE algorithm’s utilization of

signer_key_idssigner_key_ids may allow zero key_idkey_id
values during signer initialization and private

share distribution, risking exposure of private

signing keys associated with those IDs.

© 2025 Otter Audits LLC. All Rights Reserved. 7 / 25

Stacks WSTS Audit 04 — Vulnerabilities

Invalid Signatures Due to Mismatch in Key IDs HIGHHIGH OS-STS-ADV-00

Description

FIRE::gather_sig_sharesFIRE::gather_sig_shares does not enforce a strict check to ensure that the key IDs included in the

signature share (sig_shares[i].key_idssig_shares[i].key_ids) match those collected during the nonce gathering round. In
the nonce gathering round, the coordinator collects key_idskey_ids from each participant as part of the nonce

gathering response. When the coordinator then proceeds to gather the signature shares from parties, it

assumes that the structure of the share (sig_share.key_idssig_share.key_ids) matches what was initially sent during
the nonce gathering.

>_ wsts/src/statemachine/coordinator/fire.rs rust

fn gather_sig_shares(
&mut self,
packet: &Packet,
signature_type: SignatureType,

) -> Result<(), Error> {
if let Message::SignatureShareResponse(sig_share_response) = &packet.msg {

[...]
if response_info.sign_wait_signer_ids.contains(&sig_share_response.signer_id)
{

response_info.sign_wait_signer_ids.remove(&sig_share_response.signer_id);
for sig_share in &sig_share_response.signature_shares {

for key_id in &sig_share.key_ids {
response_info.sign_recv_key_ids.insert(*key_id);

}
} [...]

} [...]
}
[...]

}

The issue arises because the coordinator does not verify if the key_idskey_ids in the sig_sharessig_shares (signature

shares) match those collected during the nonce-gathering phase. In check_signature_sharescheck_signature_shares , it
utilizes sig_shares[i].key_idssig_shares[i].key_ids from the signature shares, allowing the check to incorrectly pass.

Consequently, an invalid signature may be generated without detecting malicious participants, even if the

total number of gathered signature shares is below the required threshold.

Remediation

Ensure that the sig_shares[i].key_idssig_shares[i].key_ids correspond directly to the key_idskey_ids collected during the

nonce gathering phase. This explicit comparison ensures that both rounds maintain consistent key sets.

© 2025 Otter Audits LLC. All Rights Reserved. 8 / 25

Stacks WSTS Audit 04 — Vulnerabilities

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 9 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Lack of Inclusion of Key ID in Signature Hash HIGHHIGH OS-STS-ADV-01

Description

In the current implementation of netnet , the key_idskey_ids from the signature_sharesignature_share mapping are not

included in the hash calculation in the SignatureShareResponseSignatureShareResponse message. This opens the door for

the key_idskey_ids to be tampered with without detection by the coordinator, which undermines the integrity

of the signing process. If a malicious participant changes the key_idkey_id , it may result in the coordinator
associating a signature share with the wrong key.

>_ src/net.rs rust

impl Signable for SignatureShareResponse {
fn hash(&self, hasher: &mut Sha256) {

hasher.update("SIGNATURE_SHARE_RESPONSE".as_bytes());
hasher.update(self.dkg_id.to_be_bytes());
hasher.update(self.sign_id.to_be_bytes());
hasher.update(self.signer_id.to_be_bytes());

for signature_share in &self.signature_shares {
hasher.update(signature_share.id.to_be_bytes());
hasher.update(signature_share.z_i.to_bytes());

}
}

}

The integrity of the cryptographic signing process relies on the assumption that each participant is

contributing shares corresponding to their own key. Without including key_idkey_id in the hash, it will not be

possible to ensure that signature share messages are authenticated.

Remediation

Ensure that the key_idkey_id is included in the hash calculation of the SignatureShareResponseSignatureShareResponse message.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 10 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Out of Range Key IDS in FROST HIGHHIGH OS-STS-ADV-02

Description

The FROST implementation lacks validation for the key_idskey_ids field in the nonce_responsenonce_response during

the gather_noncesgather_nonces phase. The valid range for key_idskey_ids should be [1, num_keys + 1][1, num_keys + 1] , where

num_keysnum_keys is the total number of participant keys. Without this validation, a malicious party could submit

key_idskey_ids outside this expected range.

>_ wsts/src/state_machine/coordinator/fire.rs rust

fn gather_nonces([...]) -> Result<(), Error> {
if let Message::NonceResponse(nonce_response) = &packet.msg {

if nonce_response.dkg_id != self.current_dkg_id {
return Err(Error::BadDkgId(nonce_response.dkg_id, self.current_dkg_id));

}
if nonce_response.sign_id != self.current_sign_id {

return Err(Error::BadSignId(
nonce_response.sign_id,
self.current_sign_id,

));
}
if nonce_response.sign_iter_id != self.current_sign_iter_id {

return Err(Error::BadSignIterId(
nonce_response.sign_iter_id,
self.current_sign_iter_id,

));
}
[...]

}
[...]

}

Consequently, when the key_idskey_ids are utilized in gather_sig_sharesgather_sig_shares to identify the keys associatedwith

each received signature share and perform verification against the aggregate signature, the verification

process will fail.

Remediation

Ensure that all key_idskey_ids in the received nonce_responsenonce_response are within the expected range

([1, num_keys + 1][1, num_keys + 1]).

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 11 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Possibility of Overwriting Public Share HIGHHIGH OS-STS-ADV-03

Description

dkg_endeddkg_ended in the signer module is responsible for handling the finalization of the distributed key gener-

ation phase and storing the received public commitments (public_sharespublic_shares). v2::compute_secretv2::compute_secret
later verifies these commitments against the received private shares. dkg_endeddkg_ended checks if commcomm

(the public commitment) is valid via check_public_shares(comm, threshold)check_public_shares(comm, threshold) . If the check fails,

the signer (signer_idsigner_id) is marked as malicious.

>_ src/state_machine/signer/mod.rs rust

pub fn dkg_ended<R: RngCore + CryptoRng>(&mut self, rng: &mut R) -> Result<Message, Error> {
[...]
for signer_id in &signer_ids_set {

if let Some(shares) = self.dkg_public_shares.get(signer_id) {
for (party_id, comm) in shares.comms.iter() {

if !check_public_shares(comm, threshold) {
bad_public_shares.insert(*signer_id);

} else {
self.commitments.insert(*party_id, comm.clone());

}
}

}[...]
}[...]

}

If the check passes, the commitment (commcomm) is stored in self.commitmentsself.commitments under the key party_idparty_id

, not signer_idsigner_id . A malicious signer (malicious_idmalicious_id) may submit a valid public commitment but

associate it with the party_idparty_id of an honest participant (honest_idhonest_id). This overwrites the actual public

commitment of honest_idhonest_id in self.commitmentsself.commitments , replacing it with the maliciously injected one.

>_ src/v2.rs rust

pub fn compute_secret([...]) -> Result<(), DkgError> {
[...]

if let Some(shares) = private_shares.get(key_id) for (sender, s) in shares {
if let Some(comm) = public_shares.get(sender) {

if s * G != compute::poly(&compute::id(*key_id), &comm.poly)? {
bad_shares.push(*sender);

}
} [....]

}
[...]

}

© 2025 Otter Audits LLC. All Rights Reserved. 12 / 25

Stacks WSTS Audit 04 — Vulnerabilities

Thus when honest_idhonest_id utilizes its correct private share ss for verification in compute_secretcompute_secret

, compute::poly(&compute::id(*key_id), &comm.poly)compute::poly(&compute::id(*key_id), &comm.poly) will evaluate the wrong commitment,

causing the check to fail and flagging the actual share owner as malicious.

Remediation

Enforce that only signer IDs are utilized, instead of utilizing party_idparty_id to store commitments.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 13 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Malicious Share Overwrite HIGHHIGH OS-STS-ADV-04

Description

This vulnerability arises from the way private shares are stored and verified in the distributed key gen-

eration process. A malicious party may craft both public and private shares that pass verification in

compute_secretcompute_secret but ultimately replace the actual private shares. In dkg_private_sharesdkg_private_shares in the

signer module, malicious parties may obtain the src_idsrc_id in the private share, and the private shares in

decrypted_sharesdecrypted_shares will be overwritten.

>_ src/state_machine/signer/mod.rs rust

pub fn dkg_private_shares<R: RngCore + CryptoRng>([...]) -> Result<Vec<Message>, Error> {
[...]
for (src_id, shares) in &dkg_private_shares.shares {

let mut decrypted_shares = HashMap::new();
for (dst_key_id, bytes) in shares {

if key_ids.contains(dst_key_id) {
match decrypt(&shared_secret, bytes) {

Ok(plain) => match Scalar::try_from(&plain[..]) {
Ok(s) => {

decrypted_shares.insert(*dst_key_id, s);
}[...]

},[...]
}

}
}[...]

}
[...]

}

Thus, if a malicious signer strategically chooses public and private shares that pass the public and

private shares verification in compute_secretcompute_secret , the actual shares will be replaced by those chosen

by the malicious party. Consecutively, if a threshold number of signers are malicious and they all inject

manipulated shares, the threshold security is compromised.

Remediation

Ensure that once a valid private share is assigned to dst_key_iddst_key_id , overwriting it is restricted.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 14 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Improper Validation of Empty Shares Vectors LOWLOW OS-STS-ADV-05

Description

In dkg_endeddkg_ended in the signer module, while the dkg_public_sharesdkg_public_shares and dkg_private_sharesdkg_private_shares

for a given signer_idsigner_id contain the required data, if the vectors are empty (the vector of commscomms

in dkg_public_sharesdkg_public_shares or the sharesshares vector in dkg_private_sharesdkg_private_shares), no missing shares are

flagged as missing. Thus, these missing private or public shares will not be added to the respective

missing_public_sharesmissing_public_shares and missing_private_sharesmissing_private_shares vectors.

>_ src/state_machine/signer/mod.rs rust

pub fn dkg_ended<R: RngCore + CryptoRng>(&mut self, rng: &mut R) -> Result<Message, Error> {
[...]
for signer_id in &signer_ids_set {

if let Some(shares) = self.dkg_public_shares.get(signer_id) {
for (party_id, comm) in shares.comms.iter() {

if !check_public_shares(comm, threshold) {
bad_public_shares.insert(*signer_id);

} else {
self.commitments.insert(*party_id, comm.clone());

}
}

} else {
missing_public_shares.insert(*signer_id);

}
if let Some(shares) = self.dkg_private_shares.get(signer_id) {

for dst_key_id in self.signer.get_key_ids() {
for (_src_key_id, shares) in &shares.shares {

if shares.get(&dst_key_id).is_none() {
missing_private_shares.insert(*signer_id);

}
}

}
} else {

missing_private_shares.insert(*signer_id);
}

}
[...]

}

If the commscomms vector (which contains public commitments) is empty, the loop

(for (party_id, comm) in shares.comms.iter()for (party_id, comm) in shares.comms.iter()) will not execute. As a result, the code does not
check if any public shares are missing. Similarly, if the sharesshares vector is empty, missing private shares

are not flagged. Thus, the absence of public or private shares is not flagged as a problem. As a result, the

DKG process continues without detecting that a signer has not properly contributed the shares.

© 2025 Otter Audits LLC. All Rights Reserved. 15 / 25

Stacks WSTS Audit 04 — Vulnerabilities

Remediation

Explicitly check for empty commscomms or sharesshares and add the missing private or public shares to

missing_public_sharesmissing_public_shares and missing_private_sharesmissing_private_shares respectively.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 16 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Protocol ParticipationWithout Associated Keys LOWLOW OS-STS-ADV-06

Description

The vulnerability arises from a missing validation in the protocol, specifically failing to ensure that the

number of keys per participant (nk) is greater than or equal to the number of participating parties (np).

If the protocol allows more participants than the available keys (np > nk), it effectively enables parties

without valid key associations to join and interact with the protocol, compromising the signature generation

process.

Remediation

Validate that nk ≥ np to ensure cryptographic integrity of the signing process.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 17 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Threshold Manipulation via Incorrect Submission of Key IDs LOWLOW OS-STS-ADV-

07

Description

The protocol calculates a threshold (dkg_thresholddkg_threshold) based on the expected total number of private
shares derived from the key_idskey_ids in the configuration. The size of gathered shares (dkg_sizedkg_size) is

determined via compute_dkg_private_sizecompute_dkg_private_size , which aggregates valid private shares from participants.

However, malicious participants may manipulate this process by selectively submitting fewer private

shares, limiting their submissions to only a subset of the key_idskey_ids they control. Thus, if sufficient private

shares are not gathered within the allowed time frame, the protocol may timeout, fail to meet the threshold,

and erroneously proceed to the next phase with an invalid signature.

>_ wsts/src/state_machine/coordinator/fire.rs rust

pub fn process_timeout(&mut self) -> Result<(Option<Packet>, Option<OperationResult>), Error> {
[...]

if now.duration_since(start) > timeout {
// check dkg_threshold to determine if we can continue
let dkg_size = self.compute_dkg_private_size();
if self.config.dkg_threshold > dkg_size {

[...]
let wait =self.dkg_wait_signer_ids.iter().copied().collect();
return Ok((

None,
Some(OperationResult::DkgError(DkgError::DkgPrivateTimeout(

wait,
))),

));
} [...]

}
[...]

}

Remediation

During compute_dkg_private_sizecompute_dkg_private_size , verify that all key_idskey_ids listed in the previous

DkgPublicDistributeDkgPublicDistribute phase have corresponding private shares in the current DkgPrivateGatherDkgPrivateGather
phase.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 18 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Failure to Filter Invalid Key ID LOWLOW OS-STS-ADV-08

Description

The FIRE algorithm retrieves active_key_idsactive_key_ids from the config.signer_key_idsconfig.signer_key_ids mapping. The

config.signer_key_idsconfig.signer_key_ids is expected to provide a mapping from signer_idsigner_id (a unique signer identifier)

to the list of key IDs (u32u32) associated with that participant. If the config.signer_key_idsconfig.signer_key_ids for any

signer_idsigner_id contains a zero key ID, it will be included in the active_key_idsactive_key_ids list because the function

does not filter these keys. Additionally, the signer also doesn’t check if key_idkey_id is in the range when it is

initialized.

>_ wsts/src/state_machine/signer/mod.rs rust

if threshold == 0 || threshold > total_keys {
return Err(Error::InvalidThreshold);

}

if dkg_threshold == 0 || dkg_threshold < threshold {
return Err(Error::InvalidThreshold);

}

let signer = SignerType::new(
signer_id,
&key_ids,
total_signers,
total_keys,
threshold,
rng,

);

Remediation

Ensure that all key IDs are in a specific range.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 19 / 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-STS-SUG-00

Batching private share verifications allows an adversary to manipulate the

shares such that their sum appears valid, even if the individual shares

themselves are invalid.

OS-STS-SUG-01
Suggestions regarding inconsistencies in the codebase and ensuring ad-

herence to coding best practices.

OS-STS-SUG-02
The omission of hashing the group public key when computing the binding

factor deviates from the FROST standard.

© 2025 Otter Audits LLC. All Rights Reserved. 20 / 25

Stacks WSTS Audit 05 — General Findings

Batch Verification Bypass OS-STS-SUG-00

Description

The vulnerability in the batch verification of private shares in v1::compute_secretv1::compute_secret relates to the

possibility of an adversary manipulating the private shares to pass the batch verification process even

though the shares are invalid. The issue lies in how batch verification of private shares is performed using

multi-scalar multiplication. The code combines the sharers as following : −fj1(i)G + Pj1(i) − fj2(i)G +

Pj2(i) = 0. Thus, it batches the sharers into a single multi-scalar multiplication:
∑

j(−fj(i)G+ Pj(i)) = 0,

assuming the shares are valid if their sum is zero.

>_ src/v1.rs rust

/// Compute this party's share of the group secret key
pub fn compute_secret(

&mut self,
private_shares: HashMap<u32, Scalar>,
public_shares: &HashMap<u32, PolyCommitment>,

) -> Result<(), DkgError> {
[...]

// building a vector of scalars and points from public poly evaluations and expectedvalues
takes too much memory↪→

// instead make an object which implements p256k1 MultiMult trait, using theexisting powers
of x and shares↪→

let mut check_shares =
CheckPrivateShares::new(self.id(), &private_shares, public_shares.clone());

// if the batch verify fails then check them one by one and find the bad ones
if Point::multimult_trait(&mut check_shares)? != Point::zero() {

[...]
return Err(DkgError::BadPrivateShares(bad_shares));

}
[...]

}

This method allows an adversary to craft private shares such that −fj1(i)G + Pj1(i) = x and −fj2(i)G +

Pj2(i) = −x. Consequently, when performing batching verification of these private shares via summation,

the end result will come out to be zero as the shares cancel each other, thereby passing the validation

check. Therefore, the batch verification incorrectly accepts the adversarial shares, even though each

individual share is incorrect.

Remediation

We suggest multiplying each term in the batch by a random scalar to prevent this attack.

© 2025 Otter Audits LLC. All Rights Reserved. 21 / 25

Stacks WSTS Audit 05 — General Findings

Code Maturity OS-STS-SUG-01

Description

1. Mark parties with missing public shares as malicious to strengthen the robustness of the FIRE algo-

rithm. Currently, the functionmerely returns a failuremessage (DkgFailure::MissingPublicSharesDkgFailure::MissingPublicShares
) in dkg_endeddkg_ended , without taking punitive action against the non-compliant participants.

2. To ensure the integrity of the PublicNoncePublicNonce , add validation checks to make sure that DD and EE
are not zero.

>_ wsts/src/common.rs rust

#[derive(Clone, Debug, Eq, PartialEq, Deserialize, Serialize)]
#[allow(non_snake_case)]
/// A commitment to the private nonce
pub struct PublicNonce {

/// A commitment to the private nonce's first value
pub D: Point,
/// A commitment to the private nonce's second value
pub E: Point,

}

Remediation

Implement the above-mentioned suggestions.

© 2025 Otter Audits LLC. All Rights Reserved. 22 / 25

Stacks WSTS Audit 05 — General Findings

Deviation from FROST Standards OS-STS-SUG-02

Description

A potential deviation from the FROST standard (as outlined in this link) exists in the computation of the

binding factor (ρρ). According to the standard, the group public key should be included in the hash when
computing the binding factor. While the security impact of this omission is unclear, aligning with the

standard would be advisable.

Remediation

Ensure adherence to the FROST Standard.

© 2025 Otter Audits LLC. All Rights Reserved. 23 / 25

https://datatracker.ietf.org/doc/rfc9591/

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 24 / 25

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 25 / 25

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-STS-ADV-00 | Invalid Signatures Due to Mismatch in Key IDs
	[8.75em][l]OS-STS-ADV-01 | Lack of Inclusion of Key ID in Signature Hash
	[8.75em][l]OS-STS-ADV-02 | Out of Range Key IDS in FROST
	[8.75em][l]OS-STS-ADV-03 | Possibility of Overwriting Public Share
	[8.75em][l]OS-STS-ADV-04 | Malicious Share Overwrite
	[8.75em][l]OS-STS-ADV-05 | Improper Validation of Empty Shares Vectors
	[8.75em][l]OS-STS-ADV-06 | Protocol Participation Without Associated Keys
	[8.75em][l]OS-STS-ADV-07 | Threshold Manipulation via Incorrect Submission of Key IDs
	[8.75em][l]OS-STS-ADV-08 | Failure to Filter Invalid Key ID

	General Findings
	[8.75em][l]OS-STS-SUG-00 | Batch Verification Bypass
	[8.75em][l]OS-STS-SUG-01 | Code Maturity
	[8.75em][l]OS-STS-SUG-02 | Deviation from FROST Standards

	Appendices
	Vulnerability Rating Scale
	Procedure

