GO otterSec

Security Assessment

February 4th, 2025 — Prepared by OtterSec

Tuyét Duang
Himanshu Sheoran
Nakul Choudhary

Robert Chen

tuyet@osec.io

deuterium@osec.io

quasar@osec.io

r@osec.io

mailto:tuyet@osec.io
mailto:deuterium@osec.io
mailto:quasar@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary

Overview
Key Findings
Scope
Findings
Vulnerabilities
OS-STS-ADV-00
OS-STS-ADV-01
OS-STS-ADV-02
OS-STS-ADV-03
OS-STS-ADV-04
OS-STS-ADV-05
OS-STS-ADV-06
OS-STS-ADV-07
OS-STS-ADV-08
General Findings
0S-STS-SUG-00
0S-STS-SUG-01

0OS-STS-SUG-02

Appendices

| Invalid Signatures Due to Mismatch in Key IDs

| Lack of Inclusion of Key ID in Signature Hash

| Out of Range Key IDS in FROST

| Possibility of Overwriting Public Share

| Malicious Share Overwrite

| Improper Validation of Empty Shares Vectors

| Protocol Participation Without Associated Keys

| Threshold Manipulation via Incorrect Submission of Key IDs

| Failure to Filter Invalid Key ID

| Batch Verification Bypass
| Code Maturity

| Deviation from FROST Standards

Vulnerability Rating Scale

Procedure

© 2025 Otter Audits LLC. All Rights Reserved.

10

11

12

14

15

17

18

19

20

21

22

23

24

25

1/25

Stacks WSTS Audit

TABLE OF CONTENTS

© 2025 Otter Audits LLC. All Rights Reserved. 2/25

01 — Executive Summary

Overview

Trust Machines engaged OtterSec to assess the wsts program. This assessment was conducted
between January 21st and January 31st, 2025. For more information on our auditing methodology, refer
to Appendix B.

Key Findings
We produced 12 findings throughout this audit engagement.

In particular, we identified several high vulnerabilities, including an absence of verification to ensure
that the key IDs provided in the nonce gathering round and the signature share verification phase are
consistent, allowing malicious parties to provide fewer key IDs in their signature shares, resulting in invalid
signatures (OS-STS-ADV-00).

Furthermore, malicious parties may send fewer private shares than expected, resulting in timeouts and
incorrect threshold evaluations, which may allow the protocol to proceed despite missing the required share
count (OS-STS-ADV-07), and there is a lack of validation to ensure that the number of keys per participant
is greater than or equal to the number of participating parties, enabling parties without associated keys to
participate in the protocol, performing actions such as sending nonces (OS-STS-ADV-06).

Additionally, The FIRE algorithm's utilization of signer key IDs may allow zero key ID values during signer
initialization and private share distribution, risking exposure of private signing keys associated with such
IDs (OS-STS-ADV-08).

We also advised to ensure adherence to the FROST standard, as in the current implementation, the
omission of hashing the group public key when computing the binding factor deviates from the FROST
standard (OS-STS-SUG-02). Lastly, we provided suggestions to address the possibility of batching
private share verifications, allowing an adversary to manipulate the shares such that their sum appears
valid, even if the individual shares themselves are invalid (??.

© 2025 Otter Audits LLC. All Rights Reserved. 3/25

02 — Scope

The source code was delivered to us in a Git repository at https://github.com/Trust-Machines/wsts. This
audit was performed against 612c023.

A brief description of the program is as follows:

Name Description

A system for creating Weighted Schnorr Threshold Signatures (Wi-
leyProofs). It enables a group of signers, each controlling a set of
keys, to produce a valid Schnorr signature, provided that at least T (the
threshold) signers act honestly.

wsts

© 2025 Otter Audits LLC. All Rights Reserved. 425

https://github.com/Trust-Machines/wsts
https://github.com/Trust-Machines/wsts/commit/612c0230d3469e5807575d32da7f6c992e2f6177

03 — Findings

Overall, we reported 12 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

© 2025 Otter Audits LLC. All Rights Reserved.

Severity

HIGH
MEDIUM
LOW
INFO

Count

5/25

04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

There is no verification to ensure that the
key_ids provided in the nonce gathering

HIGH RESOLVED ® round and in the signature share verification are
consistent, allowing malicious parties to pro-
vide fewer key_-ids in their signature shares,
resulting in invalid signatures.

OS-STS-ADV-00

The absence of key ID hashing in the
SignatureShareResponse message al-

OS-STS-ADV-01 HIGH HEOEY© lows for potential manipulation of key IDs
without detection, compromising the integrity
of the signature sharing process.

gather_nonces in the FROST implementation
HIGH RO @ lacks validation for the key_dids field, allow-
OS-STS-ADV-02 ing malicious parties to provide out-of-range
values, resulting in the failure of signature share
verification.

A malicious party may submit a public share
utilizing another signer's party ID, overwriting
HIGH RESOLVED ®
OS-STS-ADV-03 the original commitment. This results in a failure
of verification in compute_secret , falsely
marking the legitimate signer as malicious.

A malicious party may manipulate src_-id to
overwrite legitimate private shares and select
HIGH RESOLVED ® public and private shares that pass verification
in compute_secret to replace the actual se-
cret shares with their chosen values, thereby
compromising the DKG process.

OS-STS-ADV-04

© 2025 Otter Audits LLC. All Rights Reserved. 6/25

Stacks WSTS Audit 04 — Vulnerabilities

dkg_ended fails to properly handle empty
0S-STS-ADV-05 LOW RESOLVED ® comms in dkg_public_shares and empty
shares in dkg_private_shares , allowing

missing shares to go undetected.

There is no check to ensure that n;, > n,, allow-

LOW RESOLVED ® ing parties without associated keys to partici-
pate in the protocol and perform actions such
as sending nonces.

OS-STS-ADV-06

Malicious parties may send fewer private shares
than expected, resulting in timeouts and incor-

OS-STS-ADV-07 LOW SEEOLEN G rect threshold evaluations that may allow the
protocol to proceed despite missing the required
share count.

The FIRE algorithm's utilization of
signer_key_ids may allow zero key_1id
OS-STS-ADV-08 LoW RESOLVED © values during signer initialization and private
share distribution, risking exposure of private
signing keys associated with those IDs.

© 2025 Otter Audits LLC. All Rights Reserved. 7125

Stacks WSTS Audit 04 — Vulnerabilities

Invalid Signhatures Due to Mismatch in Key IDs HicH 0S-STS-ADV-00

Description

FIRE::gather_sig_shares does not enforce a strict check to ensure that the key IDs included in the
signature share (sig_shares[i].key_ids) match those collected during the nonce gathering round. In
the nonce gathering round, the coordinator collects key_-+ids from each participant as part of the nonce
gathering response. When the coordinator then proceeds to gather the signature shares from parties, it
assumes that the structure of the share (sig_share.key_1ids) matches what was initially sent during
the nonce gathering.

>_ wsts/src/state,,achine/coordinator/ fire.rs

fn gather_sig_shares(
&mut self,
packet: &Packet,
signature_type: SignatureType,
) -> Result<(), Error> {
if let Message::SignatureShareResponse(sig_share_response) = &packet.msg {
[...]
if response_info.sign_wait_signer_ids.contains(&sig_share_response.signer_id)
{
response_info.sign_wait_signer_ids.remove(&sig_share_response.signer_id);
for sig_share in &sig_share_response.signature_shares {
for key_id in &sig_share.key_ids {
response_info.sign_recv_key_ids.insert(xkey_id);
}
}L...]
]

The issue arises because the coordinator does not verify if the key_dids inthe sig_shares (signature
shares) match those collected during the nonce-gathering phase. In check_signature_shares , it

utilizes sig_shares[i].key_ids from the signature shares, allowing the check to incorrectly pass.
Consequently, an invalid signature may be generated without detecting malicious participants, even if the
total number of gathered signature shares is below the required threshold.

Remediation

Ensure that the sig_shares[i].key_ids correspond directly to the key_ids collected during the
nonce gathering phase. This explicit comparison ensures that both rounds maintain consistent key sets.

© 2025 Otter Audits LLC. All Rights Reserved. 8/25

Stacks WSTS Audit 04 — Vulnerabilities

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 9/25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Lack of Inclusion of Key ID in Signature Hash HicH 0S-STS-ADV-01

Description

In the current implementation of net , the key_dids from the signature_share mapping are not
included in the hash calculation in the SignatureShareResponse message. This opens the door for
the key_dids to be tampered with without detection by the coordinator, which undermines the integrity
of the signing process. If a malicious participant changes the key_1id , it may result in the coordinator
associating a signature share with the wrong key.

>_ src/net.rs

impl Signable for SignatureShareResponse {
fn hash(&self, hasher: &mut Sha256) {
hasher.update ("SIGNATURE_SHARE_RESPONSE" .as_bytes());
hasher.update(self.dkg_id.to_be_bytes());
hasher.update(self.sign_id.to_be_bytes());
hasher.update(self.signer_id.to_be_bytes());

for signature_share in &self.signature_shares {
hasher.update(signature_share.id.to_be_bytes());
hasher.update(signature_share.z_i.to_bytes());

The integrity of the cryptographic signing process relies on the assumption that each participant is
contributing shares corresponding to their own key. Without including key_-id in the hash, it will not be
possible to ensure that signature share messages are authenticated.

Remediation

Ensure that the key_-id is included in the hash calculation of the SignatureShareResponse message.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 10/ 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Out of Range Key IDS in FROST HicH 0S-STS-ADV-02

Description

The FROST implementation lacks validation for the key_+ids field in the nonce_response during
the gather_nonces phase. The valid range for key_ids should be [1, num_keys + 1], where
num_keys is the total number of participant keys. Without this validation, a malicious party could submit
key_ids outside this expected range.

>_ wsts/src/state_machine/coordinator/fire.rs

fn gather_nonces([...]) -> Result<(), Error> {
if let Message::NonceResponse(nonce_response) = &packet.msg {
if nonce_response.dkg_id != self.current_dkg_id {
return Err(Error::BadDkgId(nonce_response.dkg_id, self.current_dkg_id));
}
if nonce_response.sign_id != self.current_sign_id {
return Err(Error::BadSignId(
nonce_response.sign_id,
self.current_sign_did,
))s
b
if nonce_response.sign_iter_id != self.current_sign_iter_id {
return Err(Error::BadSignIterId(
nonce_response.sign_iter_id,
self.current_sign_iter_did,

DS

Consequently, when the key_-ids are utilized in gather_sig_shares toidentify the keys associated with

each received signature share and perform verification against the aggregate signature, the verification
process will fail.

Remediation

Ensure that all key_1ids inthe received nonce_response are within the expected range
([1, num_keys + 1]).

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 11/25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Possibility of Overwriting Public Share HicH 0S-STS-ADV-03

Description

dkg_ended in the signer module is responsible for handling the finalization of the distributed key gener-
ation phase and storing the received public commitments (public_shares). v2::compute_secret
later verifies these commitments against the received private shares. dkg_ended checks if comm
(the public commitment) is valid via check_public_shares(comm, threshold) . If the check fails,
the signer (signer_id) is marked as malicious.

>_ src/state_machine/signer/mod.rs

pub fn dkg_ended<R: RngCore + CryptoRng>(&mut self, rng: &mut R) -> Result<Message, Error> {
[...]
for signer_id in &signer_ids_set {
if let Some(shares) = self.dkg_public_shares.get(signer_id) {
for (party_id, comm) in shares.comms.iter() {
if !check_public_shares(comm, threshold) {
bad_public_shares.insert(xsigner_id);
} else {
self.commitments.insert(*party_id, comm.clone());

If the check passes, the commitment (comm) is stored in self.commitments underthe key party_1id
, hot signer_id . A malicious signer (malicious_id) may submit a valid public commitment but
associate it with the party_id of an honest participant (honest_-id). This overwrites the actual public
commitment of honest_id in self.commitments , replacing it with the maliciously injected one.

>_ src/v2.rs

pub fn compute_secret([...]) -> Result<(), DkgError> {
[...]
if let Some(shares) = private_shares.get(key_id) for (sender, s) in shares {
if let Some(comm) = public_shares.get(sender) {
if s * G = compute::poly(&compute::id(*xkey_id), &comm.poly)? {

bad_shares.push(*sender) ;

}

© 2025 Otter Audits LLC. All Rights Reserved. 12 /25

Stacks WSTS Audit 04 — Vulnerabilities

Thus when honest_id utilizes its correct private share s for verification in compute_secret

, compute: :poly(&compute::id(xkey_id), &comm.poly) will evaluate the wrong commitment,
causing the check to fail and flagging the actual share owner as malicious.

Remediation

Enforce that only signer IDs are utilized, instead of utilizing party_id to store commitments.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 13/25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Malicious Share Overwrite HiGH 0S-STS-ADV-04

Description

This vulnerability arises from the way private shares are stored and verified in the distributed key gen-
eration process. A malicious party may craft both public and private shares that pass verification in
compute_secret but ultimately replace the actual private shares. In dkg_private_shares in the
signer module, malicious parties may obtain the src_1id in the private share, and the private shares in
decrypted_shares will be overwritten.

>_ src/state_machine/signer/mod.rs

pub fn dkg_private_shares<R: RngCore + CryptoRng>([...]) -> Result<Vec<Message>, Error> {
[...]
for (src_id, shares) in &dkg_private_shares.shares {
let mut decrypted_shares = HashMap::new();
for (dst_key_id, bytes) in shares {
if key_ids.contains(dst_key_id) {
match decrypt(&shared_secret, bytes) {
Ok(plain) => match Scalar::try_from(&plain[..]) {
Ok(s) => {
decrypted_shares.insert(xdst_key_id, s);
...
oo

Thus, if a malicious signer strategically chooses public and private shares that pass the public and
private shares verification in compute_secret , the actual shares will be replaced by those chosen
by the malicious party. Consecutively, if a threshold number of signers are malicious and they all inject
manipulated shares, the threshold security is compromised.

Remediation

Ensure that once a valid private share is assigned to dst_key_-id , overwriting it is restricted.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 14 /25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Improper Validation of Empty Shares Vectors Low 0S-STS-ADV-05

Description

In dkg_ended in the signer module, while the dkg_public_shares and dkg_private_shares
for a given signer_id contain the required data, if the vectors are empty (the vector of comms
in dkg_public_shares orthe shares vectorin dkg_private_shares), no missing shares are

flagged as missing. Thus, these missing private or public shares will not be added to the respective
missing_public_shares and missing_private_shares vectors.

>_ src/state_machine/signer/mod.rs

pub fn dkg_ended<R: RngCore + CryptoRng>(&mut self, rng: &mut R) -> Result<Message, Error> {
[...]
for signer_id in &signer_ids_set {
if let Some(shares) = self.dkg_public_shares.get(signer_id) {
for (party_id, comm) in shares.comms.iter() {
if !check_public_shares(comm, threshold) {
bad_public_shares.insert(xsigner_id);
} else {
self.commitments.insert(*party_id, comm.clone());
}
}
} else {
missing_public_shares.insert(xsigner_id);
ks
if let Some(shares) = self.dkg_private_shares.get(signer_id) {
for dst_key_id in self.signer.get_key_ids() {
for (_src_key_1id, shares) in &shares.shares {
if shares.get(&dst_key_id).is_none() {
missing_private_shares.insert(xsigner_id);

}

}
} else {
missing_private_shares.insert(xsigner_id);

If the comms vector (which contains public commitments) is empty, the loop

(for (party_id, comm) in shares.comms.1iter ()) will not execute. As a result, the code does not
check if any public shares are missing. Similarly, if the shares vector is empty, missing private shares
are not flagged. Thus, the absence of public or private shares is not flagged as a problem. As a result, the
DKG process continues without detecting that a signer has not properly contributed the shares.

© 2025 Otter Audits LLC. All Rights Reserved. 15/ 25

Stacks WSTS Audit 04 — Vulnerabilities
Remediation

Explicitly check for empty comms or shares and add the missing private or public shares to
missing_public_shares and missing_private_shares respectively.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 16/ 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Protocol Participation Without Associated Keys Low 0S-STS-ADV-06

Description

The vulnerability arises from a missing validation in the protocol, specifically failing to ensure that the
number of keys per participant (n;) is greater than or equal to the number of participating parties (n,).
If the protocol allows more participants than the available keys (n, > ny), it effectively enables parties
without valid key associations to join and interact with the protocol, compromising the signature generation
process.

Remediation

Validate that n;, > n, to ensure cryptographic integrity of the signing process.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 17/ 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Threshold Manipulation via Incorrect Submission of Key IDs Low 0s-STS-ADV-
07

Description

The protocol calculates a threshold (dkg_threshold) based on the expected total number of private
shares derived from the key_1ids in the configuration. The size of gathered shares (dkg_size) is

determined via compute_dkg_private_size , which aggregates valid private shares from participants.
However, malicious participants may manipulate this process by selectively submitting fewer private
shares, limiting their submissions to only a subset of the key_-dids they control. Thus, if sufficient private
shares are not gathered within the allowed time frame, the protocol may timeout, fail to meet the threshold,
and erroneously proceed to the next phase with an invalid signature.

>_ wsts/src/state_machine/coordinator/fire.rs RUST

pub fn process_timeout(&mut self) -> Result<(Option<Packet>, Option<OperationResult>), Error> {

[oool

if now.duration_since(start) > timeout {

let dkg_size = self.compute_dkg_private_size();
if self.config.dkg_threshold > dkg_size {
[...]
let wait =self.dkg_wait_signer_ids.iter().copied().collect();
return Ok ((
None,
Some (OperationResult: :DkgError (DkgError: :DkgPrivateTimeout (
wait,

1))

)5

Remediation

During compute_dkg_private_size, verify that all key_-ids listed in the previous

DkgPublicDistribute phase have corresponding private shares in the current DkgPrivateGather
phase.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 18 /25

https://github.com/stacks-sbtc/wsts/pull/130/commits

Stacks WSTS Audit 04 — Vulnerabilities

Failure to Filter Invalid Key ID Low 0S-STS-ADV-08

Description

The FIRE algorithm retrieves active_key_ids from the config.signer_key_ids mapping. The
config.signer_key_-ids is expected to provide a mapping from signer_id (a unique signer identifier)
to the list of key IDs (u32) associated with that participant. If the config.signer_key_ids for any
signer_id contains a zero key ID, it will be included in the active_key_ids list because the function

does not filter these keys. Additionally, the signer also doesn't check if key_1id isin the range when it is
initialized.

>_ wsts/src/state_machine/signer/mod.rs

if threshold == 0 || threshold > total_keys {
return Err(Error::InvalidThreshold) ;

}

if dkg_threshold == 0 || dkg_threshold < threshold {
return Err(Error::InvalidThreshold);

}

let signer = SignerType: :new(
signer_id,
&key_1ids,
total_signers,
total_keys,
threshold,
rng,

Remediation

Ensure that all key IDs are in a specific range.

Patch

Fixed in PR#130.

© 2025 Otter Audits LLC. All Rights Reserved. 19/ 25

https://github.com/stacks-sbtc/wsts/pull/130/commits

05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

Batching private share verifications allows an adversary to manipulate the
0OS-STS-SUG-00 shares such that their sum appears valid, even if the individual shares
themselves are invalid.

Suggestions regarding inconsistencies in the codebase and ensuring ad -

0S-STS-SUG-01 . .
herence to coding best practices.

The omission of hashing the group public key when computing the binding

0S-STS-SUG-02 .
factor deviates from the FROST standard.

© 2025 Otter Audits LLC. All Rights Reserved. 20/ 25

Stacks WSTS Audit 05 — General Findings

Batch Verification Bypass 0S-STS-SUG-00

Description

The vulnerability in the batch verification of private shares in v1::compute_secret relates to the
possibility of an adversary manipulating the private shares to pass the batch verification process even
though the shares are invalid. The issue lies in how batch verification of private shares is performed using
multi-scalar multiplication. The code combines the sharers as following : —f;1(i)G + Pj1(i) — fj2(1)G +
Pj2(i) = 0. Thus, it batches the sharers into a single multi-scalar multiplication: >°:(—f;(i)G + P;(i)) = 0,
assuming the shares are valid if their sum is zero.

>_ src/vl.rs

pub fn compute_secret(
&mut self,
private_shares: HashMap<u32, Scalar>,
public_shares: &HashMap<u32, PolyCommitment>,
) —> Result<(), DkgError> {
[...]

let mut check_shares =
CheckPrivateShares: :new(self.id(), &private_shares, public_shares.clone());

if Point::multimult_trait(&mut check_shares)? != Point::zero() {

Foool

return Err (DkgError::BadPrivateShares(bad_shares));

This method allows an adversary to craft private shares such that —f;1(i)G + P;1(i) = x and — f;2(i)G +
Pj,(i) = —z. Consequently, when performing batching verification of these private shares via summation,
the end result will come out to be zero as the shares cancel each other, thereby passing the validation
check. Therefore, the batch verification incorrectly accepts the adversarial shares, even though each
individual share is incorrect.

Remediation

We suggest multiplying each term in the batch by a random scalar to prevent this attack.

© 2025 Otter Audits LLC. All Rights Reserved. 21/25

Stacks WSTS Audit 05 — General Findings

Code Maturity 0S-STS-SUG-01

Description

1. Mark parties with missing public shares as malicious to strengthen the robustness of the FIRE algo-
rithm. Currently, the function merely returns a failure message (DkgFailure: :MissingPublicShares
) in dkg_ended , without taking punitive action against the non-compliant participants.

2. To ensure the integrity of the PublicNonce , add validation checks to make sure that D and E
are not zero.

>_ wsts/src/common.rs

pub struct PublicNonce {

pub D: Point,

pub E: Point,

Remediation

Implement the above -mentioned suggestions.

© 2025 Otter Audits LLC. All Rights Reserved. 22 /25

Stacks WSTS Audit 05 — General Findings

Deviation from FROST Standards 0S-STS-SUG-02

Description

A potential deviation from the FROST standard (as outlined in this link) exists in the computation of the
binding factor (p). According to the standard, the group public key should be included in the hash when
computing the binding factor. While the security impact of this omission is unclear, aligning with the
standard would be advisable.

Remediation

Ensure adherence to the FROST Standard.

© 2025 Otter Audits LLC. All Rights Reserved. 23 /25

https://datatracker.ietf.org/doc/rfc9591/

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

» Misconfigured authority or access control validation.
« Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

» Loss of funds requiring specific victim interactions.
+ Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

+ Computational limit exhaustion through malicious input.
e Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

+ Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

o Explicit assertion of critical internal invariants.
¢ Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 24 | 25

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program'’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle
is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 25/ 25

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-STS-ADV-00 | Invalid Signatures Due to Mismatch in Key IDs
	[8.75em][l]OS-STS-ADV-01 | Lack of Inclusion of Key ID in Signature Hash
	[8.75em][l]OS-STS-ADV-02 | Out of Range Key IDS in FROST
	[8.75em][l]OS-STS-ADV-03 | Possibility of Overwriting Public Share
	[8.75em][l]OS-STS-ADV-04 | Malicious Share Overwrite
	[8.75em][l]OS-STS-ADV-05 | Improper Validation of Empty Shares Vectors
	[8.75em][l]OS-STS-ADV-06 | Protocol Participation Without Associated Keys
	[8.75em][l]OS-STS-ADV-07 | Threshold Manipulation via Incorrect Submission of Key IDs
	[8.75em][l]OS-STS-ADV-08 | Failure to Filter Invalid Key ID

	General Findings
	[8.75em][l]OS-STS-SUG-00 | Batch Verification Bypass
	[8.75em][l]OS-STS-SUG-01 | Code Maturity
	[8.75em][l]OS-STS-SUG-02 | Deviation from FROST Standards

	Appendices
	Vulnerability Rating Scale
	Procedure

