
Stacks Signer Binary Audit
April 4, 2024

By CoinFabrik

v202311



Stacks Signer Binary
Apr 4, 2024

Executive Summary 3
Scope 3
Methodology 3
Findings 4

Severity Classification 5
Issues Status 5
Critical Severity Issues 6

CR-01 Lack of StackDB chunk verification 6
High Severity Issues 6

HI-01 Denial Of Service Reading StackDB Chunks 6
Medium Severity Issues 7

ME-01 Improper Validation of BlockValidationResponse Event 7
ME-02 SignerDB Database Always Grows 7

Minor Severity Issues 8
MI-01 Manipulation Of Terminal Via Binary Data Chunk 8

Enhancements 9
EN-01 Incorrect Debug Message at Event Parsing 9

Changelog 10

Page 2 of 10



Stacks Signer Binary
Apr 4, 2024

Executive Summary
CoinFabrik was asked to audit the contracts for the Stacks Signer Binary project.

During this audit we found one critical issue, one high issue, two medium issues and a
minor issue. Also, an enhancement was proposed.

Scope
The audited files are from the git repository located at
https://github.com/stacks-network/stacks-core/tree/next/stacks-signer. The audit is based on
the commit 45c80a417907d757c4f17a3bd0597874587eb8b0. During the audit, the code
updated up to commit 0e9cf5dc1b6f66d1c184c2f4924fdf2c37706f2d that was the final
audited commit.

The scope for this audit includes and is limited to the following files:

● stacks-signer/src/cli.rs: Stacks-signer cli command parser
● stacks-signer/src/config.rs: configuration manager
● stacks-signer/src/coordinator.rs: node coordinator module

● stacks-signer/src/main.rs: Top cli file

● stacks-signer/src/runloop.rs: Signer command loop

● stacks-signer/src/signer.rs: Signer main file

● stacks-signer/src/signerdb.rs: Signer block database manager

● stacks-signer/src/client/stackerdb.rs: Stackerdb client

● stacks-signer/src/client/stacks_client.rs: Stacks node client

● stacks-signer/src/client/mod.rs: Client module top file

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior, and general documentation about the project. Our auditors spent four
weeks auditing the source code provided, and then an additional week auditing updated
code, which includes understanding the context of use, analyzing the boundaries of the
expected behavior of each contract and function, understanding the implementation by the
development team (including dependencies beyond the scope to be audited) and
identifying possible situations in which the code allows the caller to reach a state that
exposes some vulnerability. Without being limited to them, the audit process included the
following analyses.

Page 3 of 10



Stacks Signer Binary
Apr 4, 2024

● Arithmetic errors
● Race conditions
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

CR-01 Lack of StackDB chunk verification Critical Unresolved

HI-01 Denial Of Service Reading StackDB Chunks High Unresolved

ME-01 Improper Validation of
BlockValidationResponse Event

Medium Unresolved

ME-02 SignerDB Database Always Grows Medium Unresolved

MI-01 Manipulation Of Terminal Via Binary Data
Chunk

Minor Unresolved

Page 4 of 10



Stacks Signer Binary
Apr 4, 2024

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Page 5 of 10



Stacks Signer Binary
Apr 4, 2024

Critical Severity Issues

CR-01 Lack of StackDB chunk verification
Location:

● stacks-signer/src/main.rs:168,175,182

Classification:
● CWE-345: Insufficient Verification of Data Authenticity1

Chunks retrieved from StackerDB are not verified, so any malicious StackerDB instance (or
any user in the network, as connection is not encrypted) could inject any data and
impersonate any user of StackerDB.

Commands get-chunk, get-latest-chunk and list-chunks are affected, as well as the signer
server and every function that uses Stackerdb data.

Recommendation

Verify every chunk signature. As signatures in StackerDB are recoverable, no additional
data is needed apart from that stored on the StackerDB metadata.

Status

Unresolved

High Severity Issues

HI-01 Denial Of Service Reading StackDB Chunks
Location:

● stacks-signer/src/main.rs:171,178,185

Classification:
● CWE-400: Uncontrolled Resource Consumption2

While reading from StackerDB, the stacks-signer binary does not control for the size of
data reading, allowing a malicious StackerDB instance to send unlimited data, that will
cause stacks-signer to use all CPU and memory assigned, causing it to be killed by the
operating system.

2https://cwe.mitre.org/data/definitions/400.html
1https://cwe.mitre.org/data/definitions/345.html

Page 6 of 10



Stacks Signer Binary
Apr 4, 2024

To trigger this issue, a simple HTTP server that sends infinite data is needed. An example
server named evilserver-dos.py is provided. Instructions are:

1) Start evilserver-dos:

$ python3 evilserver-dos.py

2) Retrieve a chunk from evilserver:

$ ./stacks-signer get-chunk --host 127.0.0.1:8000 --contract
SP5N7QWC3BGM58AV63VK1HDRN217DH8JK42M292G.test --slot-id 1234 --slot-version 1

This will cause the signer-binary to consume all CPU and RAM, and crash in some seconds.

Recommendation

Limit the amount of data that is retrieved from StackerDB to the maximum chunk size.

Status

Unresolved

Medium Severity Issues

ME-01 Improper Validation of BlockValidationResponse Event
Location:

● stacks-signer/src/signer.rs:1218

Classification:
● CWE-400: Uncontrolled Resource Consumption3

The stacks-singer binary parses a BlockValidationResponse event for a reward cycle that
does not belong to the signer. As a consequence it is possible to waste the signer-db
storage inserting unused blocks.

ME-02 SignerDB Database Always Grows
Location:

● stacks-signer/src/signerdb.rs:131

3https://cwe.mitre.org/data/definitions/20.html

Page 7 of 10



Stacks Signer Binary
Apr 4, 2024

Classification:
● CWE-20: Improper Input Validation4

function remove_block() removes a block from the database, but this function is not called
from anywhere in the code. As this is the only way to clean old blocks, it means the
database will always grow, as there is no way to remove unused data, eventually
consuming all storage.

Recommendation

Implement a method to remove old and unused data from the SignerDB database.

Status

Unresolved

Minor Severity Issues

MI-01 Manipulation Of Terminal Via Binary Data Chunk
Location:

● stacks-signer/src/main.rs:171,178,185

Classification:
● CWE-116: Improper Encoding or Escaping of Output5

The Stacks-signer commands get-chunk, get-latest-chunk and list-chunks retrieve chunks
from StackerDB and print them to the system console. But the system console can be
manipulated by binary control sequences, causing output data to be hidden or modified.

As an example, we provide a file called evilchunk.dat, with the following data:

EVIL

[2A[K2e1608dfa6e0b5569232559e3d385fea5a931122e1608dfa6e0b5569:232559e3d385fea5a93112

But when using stacks-signer to read this chunk, this is the output of the console:

$ ./stacks-signer get-chunk --host

2e1608dfa6e0b5569232559e3d385fea5a931122e1608dfa6e0b5569:232559e3d385fea5a93112

Note that the “EVIL” data is not printed, because it's hidden using the terminal control
sequences “[2A[K”.

5https://cwe.mitre.org/data/definitions/116.html
4https://cwe.mitre.org/data/definitions/400.html

Page 8 of 10



Stacks Signer Binary
Apr 4, 2024

To trigger this issue, a simple HTTP server that sends infinite data is needed. An example
server named evilserver-dos.py is provided. Instructions are:

1) Start evilserver:

$ python3 evilserver.py

2) Retrieve a chunk from evilserver:

$ ./stacks-signer get-chunk --host 127.0.0.1:8000 --contract
SP5N7QWC3BGM58AV63VK1HDRN217DH8JK42M292G.test --slot-id 1234 --slot-version 1

This will incorrectly print the chunk and trigger the issue.

Recommendation

Filter escape sequences, or preferentially, escape all binary data from the output to the
terminal.

Status

Unresolved

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Incorrect Debug Message At Event Parsing Not implemented

EN-01 Incorrect Debug Message at Event Parsing
Location:

● stacks-signer/src/signer.rs:1218

The validation code is:

if *signer_set != self.stackerdb.get_signer_set() {
debug!("{self}: Received a signer message for a reward cycle that does not belong

to this signer. Ignoring...");
return Ok(());

}

But clearly this validation is for the signer_set, not the reward cycle.

Page 9 of 10



Stacks Signer Binary
Apr 4, 2024

Recommendation
Modify the debug message to reflect the correct validation operation.

Status
Not Implemented

Changelog
● 2024-05-04 – Initial report based on commit

0e9cf5dc1b6f66d1c184c2f4924fdf2c37706f2d.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Stacks project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 10 of 10


