
Stacks Audit
Proof of Transfer 4

March 2024

By CoinFabrik

v202311

Stacks PoX-4 Audit​
March 2024

Executive Summary​ 3
Scope​ 3
Methodology​ 3
Findings​ 4

Severity Classification​ 4
Issues Status​ 5
Critical Severity Issues​ 5
High Severity Issues​ 5
Medium Severity Issues​ 5
Minor Severity Issues​ 5

MI-01 Resolve TODO Comment​ 5
Enhancements​ 6

EN-01 Use secp256k1-verify for Signatures Verification​ 6
Other Considerations​ 6

Centralization​ 6
Upgrades​ 6
Privileged Roles​ 7

Pool Delegate​ 7
Signer​ 7

Node can Call Private Functions​ 7
Changelog​ 7

Page 2 of 7

Stacks PoX-4 Audit​
March 2024

Executive Summary
CoinFabrik was asked to audit the contracts for the Stacks project.

Stacks is a Bitcoin Layer-2, which enables smart contracts and decentralized applications to
use Bitcoin as a secure base layer. Stacks extends the capabilities of Bitcoin without
changing Bitcoin.

During this audit we found a minor issue. An enhancement was proposed.

The minor issue was acknowledged. The enhancement was not implemented.

Scope
The audited files are from the git repository located at
https://github.com/stacks-network/stacks-core.git. The audit is based on the commit
5f01065c43cc88046880573b1b7ec5acf518257f.

The scope for this audit includes and is limited to the following files:

●​ stackslib/src/chainstate/stacks/boot/pox-4.clar: Core stacking contract.
Mainly an update to PoX-3 with a focus on registering signers and removing
rejection functionality.

●​ stackslib/src/chainstate/stacks/boot/signers.clar: Storage contract that
holds the signer set and its associated data. It is updated every reward cycle.

●​ stackslib/src/chainstate/stacks/boot/signers-voting.clar: Contract
which all signers use to vote on the next cycle aggregated public key.

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior, and general documentation about the project. Our auditors spent two
weeks auditing the source code provided, which includes understanding the context of use,
analyzing the boundaries of the expected behavior of each contract and function,
understanding the implementation by the development team (including dependencies
beyond the scope to be audited) and identifying possible situations in which the code
allows the caller to reach a state that exposes some vulnerability. Without being limited to
them, the audit process included the following analyses.

●​ Arithmetic errors

Page 3 of 7

https://github.com/stacks-network/stacks-core.git

Stacks PoX-4 Audit​
March 2024

●​ Race conditions
●​ Misuse of block timestamps
●​ Denial of service attacks
●​ Excessive gas usage
●​ Missing or misused function qualifiers
●​ Needlessly complex code and contract interactions
●​ Poor or nonexistent error handling
●​ Insufficient validation of the input parameters
●​ Incorrect handling of cryptographic signatures
●​ Centralization and upgradeability​

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

MI-01 Resolve TODO Comment Minor Acknowledged

​
Severity Classification
Security risks are classified as follows:

●​ Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

●​ High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

●​ Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

●​ Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds

Page 4 of 7

Stacks PoX-4 Audit​
March 2024

of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

●​ Unresolved: The issue has not been resolved.

●​ Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

●​ Resolved: Adjusted program implementation to eliminate the risk.

●​ Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

●​ Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

High Severity Issues
No issues found.

Medium Severity Issues
No issues found.

Minor Severity Issues

MI-01 Resolve TODO Comment
Location:

●​ stackslib/src/chainstate/stacks/boot/pox-4.clar:896

The previous location has the following comment​
​ ;; TODO: this must be authorized with a signature, or tx-sender allowance!

Recommendation
Implement the missing logic or remove the comment if it does not apply anymore.

Page 5 of 7

Stacks PoX-4 Audit​
March 2024

Status
Acknowledged. The TODO comment will be removed in following iterations.

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Use secp256k1-verify for Signatures Verification Not implemented

EN-01 Use secp256k1-verify for Signatures Verification
Location:

●​ stackslib/src/chainstate/stacks/boot/pox-4.clar:754-758

The Proof of Transfer contract verifies the signature by recovering the public key used with
secp256k1-recover? and then comparing it to the provided public key by parameter.
However, the Clarity language already provides a native function for doing it in a single
instruction, secp256k1-verify.

Recommendation
Simplify the function by using secp256k1-verify.

Status
Not implemented.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization
There is no point of centralization.

Upgrades
The Stacks node codebase needs to be updated in order to upgrade the contracts.

Page 6 of 7

Stacks PoX-4 Audit​
March 2024

Privileged Roles
These are the privileged roles that we identified on each of the audited contracts.

Pool Delegate
Pool delegate / operator that stacks on behalf of other stackers (specifically ‘pool stacker’).

Signer
Known as a Signer, this is technically a node that has multiple signing responsibilities such
as: signing for blocks, voting on an aggregated public key.

Node can Call Private Functions
In the signers contract (signers.clar), there are only private and read-only functions, so the
contract state does not seem modifiable. However, only for this contract, private functions
are called from the node via special boot code functionality where it can execute
transactions directly on the clarity database.

Changelog
●​ 2024-03-08 – Initial report based on commit

5f01065c43cc88046880573b1b7ec5acf518257f.
●​ 2025-01-17 – Final report based on development team feedback.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Stacks project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 7 of 7

	logo-coinfabrik-blue.png
	

	Stacks Audit
	
	Executive Summary
	Scope
	Methodology
	Findings
	​Severity Classification
	Issues Status
	Critical Severity Issues
	High Severity Issues
	Medium Severity Issues
	Minor Severity Issues
	MI-01 Resolve TODO Comment
	Recommendation
	Status

	Enhancements
	EN-01 Use secp256k1-verify for Signatures Verification
	Recommendation
	Status

	Other Considerations
	Centralization
	Upgrades
	Privileged Roles
	Pool Delegate
	Signer

	Node can Call Private Functions

	Changelog

